Skip to main content

Advertisement

Log in

Intra-examiner repeatability and agreement of corneal pachymetry map measurement by time-domain and Fourier-domain optical coherence tomography

  • Miscellaneous
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To assess the intra-examiner repeatability and agreement of corneal pachymetry maps measured by time-domain (Visante OCT) and Fourier-domain optical coherence tomography (RTVue OCT).

Methods

This observational cross-sectional study enrolled 72 eyes from 72 volunteers. Only one eye of each patient was chosen randomly to receive repeated scanning with both devices by the same examiner, in order to test the intra-observer repeatability. The first scan by each device from all enrolled eyes was used to analyze the difference and agreement between the two devices. The agreement between the two devices was analyzed by the Bland–Altman method. Intra-observer repeatability of each OCT device was analyzed by intra-class correlation (ICC).

Results

The mean corneal thickness of the central 2 mm zone was 524.3 ± 35.7 µm and 525.4 ± 35.3 µm by the Visante OCT and the RTVue OCT respectively (p = 0.089). The intra-observer repeatability of the RTVue OCT (ICC = 0.994) was superior to that of the Visante OCT (ICC = 0.989) in the central 2 mm zone. However, the intra-observer repeatability of the RTVue OCT in the pericentral 2 to 5 mm zone was not superior to that of the Visante OCT. Both OCT devices had similar repeatability in the pericentral 2 to 5 mm zone [ICC of the Visante OCT = 0.991; 95% confidence interval (CI) 0.986–0.995), ICC of the RTVue OCT = 0.991; 95% CI 0.985–0.994)).

Conclusions

The difference in CCT measurement by the Visante OCT and the RTVue OCT is probably too small to influence clinical decision making for refractive surgery and glaucoma management. The RTVue OCT demonstrated better intra-observer repeatability in the central 2 mm zone, which probably was related to its rapid image acquisition capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Patwardhan AA, Khan M, Mollan SP, Haigh P (2008) The importance of central corneal thickness measurements and decision making in general ophthalmology clinics: a masked observational study. BMC Ophthalmol 8:1, doi:1471-2415-8-1 [pii] 10.1186/1471-2415-8-1

    Article  PubMed  Google Scholar 

  2. Johnson M, Kass MA, Moses RA, Grodzki WJ (1978) Increased corneal thickness simulating elevated intraocular pressure. Arch Ophthalmol 96:664–665

    CAS  PubMed  Google Scholar 

  3. Whitacre MM, Stein RA, Hassanein K (1993) The effect of corneal thickness on applanation tonometry. Am J Ophthalmol 115:592–596

    CAS  PubMed  Google Scholar 

  4. Stodtmeister R (1998) Applanation tonometry and correction according to corneal thickness. Acta Ophthalmol Scand 76:319–324

    Article  CAS  PubMed  Google Scholar 

  5. Feltgen N, Leifert D, Funk J (2001) Correlation between central corneal thickness, applanation tonometry, and direct intracameral IOP readings. Br J Ophthalmol 85:85–87

    Article  CAS  PubMed  Google Scholar 

  6. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Kass MA (2002) The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120:714–720; discussion 829–730, doi:ecs20044 [pii]

    PubMed  Google Scholar 

  7. Dueker DK, Singh K, Lin SC, Fechtner RD, Minckler DS, Samples JR, Schuman JS (2007) Corneal thickness measurement in the management of primary open-angle glaucoma: a report by the American Academy of Ophthalmology. Ophthalmology 114:1779–1787, doi:S0161-6420(07)00773-7 [pii] 10.1016/j.ophtha.2007.04.068

    Article  PubMed  Google Scholar 

  8. Randleman JB, Woodward M, Lynn MJ, Stulting RD (2008) Risk assessment for ectasia after corneal refractive surgery. Ophthalmology 115:37–50, doi:S0161-6420(07)00371-5 [pii] 10.1016/j.ophtha.2007.03.073

    Article  PubMed  Google Scholar 

  9. Hashemi H, Roshani M, Mehravaran S, Parsafar H, Yazdani K (2007) Effect of corneal thickness on the agreement between ultrasound and Orbscan II pachymetry. J Cataract Refract Surg 33:1694–1700, doi:S0886-3350(07)01171-6 [pii] 10.1016/j.jcrs.2007.05.036

    Article  PubMed  Google Scholar 

  10. Drexler W, Baumgartner A, Findl O, Hitzenberger CK, Sattmann H, Fercher AF (1997) Submicrometer precision biometry of the anterior segment of the human eye. Invest Ophthalmol Vis Sci 38:1304–1313

    CAS  PubMed  Google Scholar 

  11. Bechmann M, Thiel MJ, Neubauer AS, Ullrich S, Ludwig K, Kenyon KR, Ulbig MW (2001) Central corneal thickness measurement with a retinal optical coherence tomography device versus standard ultrasonic pachymetry. Cornea 20:50–54

    Article  CAS  PubMed  Google Scholar 

  12. Kim HY, Budenz DL, Lee PS, Feuer WJ, Barton K (2008) Comparison of central corneal thickness using anterior segment optical coherence tomography vs ultrasound pachymetry. Am J Ophthalmol 145:228–232, doi:S0002-9394(07)00853-7 [pii] 10.1016/j.ajo.2007.09.030

    Article  PubMed  Google Scholar 

  13. Li H, Leung CK, Wong L, Cheung CY, Pang CP, Weinreb RN, Lam DS (2008) Comparative study of central corneal thickness measurement with slit-lamp optical coherence tomography and visante optical coherence tomography. Ophthalmology 115:796–801, doi:S0161-6420(07)00775-0 [pii] 10.1016/j.ophtha.2007.07.006, e792

    Article  PubMed  Google Scholar 

  14. Li Y, Shekhar R, Huang D (2006) Corneal pachymetry mapping with high-speed optical coherence tomography. Ophthalmology 113:792–799, doi:S0161-6420(06)00146-1 [pii] 10.1016/j.ophtha.2006.01.048, e792

    Article  PubMed  Google Scholar 

  15. Wong AC, Wong CC, Yuen NS, Hui SP (2002) Correlational study of central corneal thickness measurements on Hong Kong Chinese using optical coherence tomography, Orbscan and ultrasound pachymetry. Eye 16:715–721. doi:10.1038/sj.eye.6700211

    Article  PubMed  Google Scholar 

  16. Prospero Ponce CM, Rocha KM, Smith SD, Krueger RR (2009) Central and peripheral corneal thickness measured with optical coherence tomography, Scheimpflug imaging, and ultrasound pachymetry in normal, keratoconus-suspect, and post-laser in situ keratomileusis eyes. J Cataract Refract Surg 35:1055–1062, doi:S0886-3350(09)00224-7 [pii] 10.1016/j.jcrs.2009.01.022

    Article  PubMed  Google Scholar 

  17. Viestenz A, Vogt S, Langenbucher A, Walter S, Behrens-Baumann W (2009) Biometry of the anterior segment using optical coherence tomography: Evaluation of different devices and analysis programs. Ophthalmologe 106:723–728, doi:10.1007/s00347-008-1836-6

    Article  CAS  PubMed  Google Scholar 

  18. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    CAS  PubMed  Google Scholar 

  19. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  20. Mohamed S, Lee GK, Rao SK, Wong AL, Cheng AC, Li EY, Chi SC, Lam DS (2007) Repeatability and reproducibility of pachymetric mapping with Visante anterior segment-optical coherence tomography. Invest Ophthalmol Vis Sci 48:5499–5504, doi:48/12/5499 [pii] 10.1167/iovs.07-0591

    Article  PubMed  Google Scholar 

  21. Shih CY, Graff Zivin JS, Trokel SL, Tsai JC (2004) Clinical significance of central corneal thickness in the management of glaucoma. Arch Ophthalmol 122:1270–1275, doi:10.1001/archopht.122.9.1270 122/9/1270 [pii]

    Article  PubMed  Google Scholar 

  22. Li EY, Mohamed S, Leung CK, Rao SK, Cheng AC, Cheung CY, Lam DS (2007) Agreement among 3 methods to measure corneal thickness: ultrasound pachymetry, Orbscan II, and Visante anterior segment optical coherence tomography. Ophthalmology 114:1842–1847, doi:S0161-6420(07)00189-3 [pii] 10.1016/j.ophtha.2007.02.017

    Article  PubMed  Google Scholar 

  23. Prakash G, Agarwal A, Jacob S, Kumar DA, Banerjee R (2009) Comparison of fourier-domain and time-domain optical coherence tomography for assessment of corneal thickness and intersession repeatability. Am J Ophthalmol 148:282–290, doi:S0002-9394(09)00214-1 [pii] 10.1016/j.ajo.2009.03.012, e282

    Article  PubMed  Google Scholar 

  24. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28:2067–2069

    Article  PubMed  Google Scholar 

  25. Lim JI, Tan O, Fawzi AA, Hopkins JJ, Gil-Flamer JH, Huang D (2008) A pilot study of Fourier-domain optical coherence tomography of retinal dystrophy patients. Am J Ophthalmol 146:417–426,doi:S0002-9394(08)00392-9 [pii] 10.1016/j.ajo.2008.05.018

    Article  PubMed  Google Scholar 

  26. Su DH, Wong TY, Foster PJ, Tay WT, Saw SM, Aung T (2009) Central corneal thickness and its associations with ocular and systemic factors: the Singapore Malay Eye Study. Am J Ophthalmol 147:709–716, doi:S0002-9394(08)00809-X [pii] 10.1016/j.ajo.2008.10.013, e701

    Article  PubMed  Google Scholar 

  27. Foster PJ, Baasanhu J, Alsbirk PH, Munkhbayar D, Uranchimeg D, Johnson GJ (1998) Central corneal thickness and intraocular pressure in a Mongolian population. Ophthalmology 105:969–973, doi:S0161-6420(98)96021-3 [pii] 10.1016/S0161-6420(98)96021-3

    Article  CAS  PubMed  Google Scholar 

  28. Lam AK, Douthwaite WA (1998) The corneal-thickness profile in Hong Kong Chinese. Cornea 17:384–388, doi:00003226-199807000-00008 [pii]

    Article  CAS  PubMed  Google Scholar 

  29. Brandt JD, Beiser JA, Kass MA, Gordon MO (2001) Central corneal thickness in the Ocular Hypertension Treatment Study (OHTS). Ophthalmology 108:1779–1788

    Article  CAS  PubMed  Google Scholar 

  30. Shimmyo M, Ross AJ, Moy A, Mostafavi R (2003) Intraocular pressure, Goldmann applanation tension, corneal thickness, and corneal curvature in Caucasians, Asians, Hispanics, and African Americans. Am J Ophthalmol 136:603–613, doi:S0002939403004240 [pii]

    Article  PubMed  Google Scholar 

  31. La Rosa FA, Gross RL, Orengo-Nania S (2001) Central corneal thickness of Caucasians and African Americans in glaucomatous and nonglaucomatous populations. Arch Ophthalmol 119:23–27,. doi:ecs90288 [pii]

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Lin.

Additional information

Financial disclosure

None of the authors have any financial or proprietary interests in the products mentioned in this report.

The study was reported as a poster at the 19th Annual Meeting of the American Glaucoma Society in San Diego, March 7 to 8, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, JY., Pekmezci, M., Yaplee, S. et al. Intra-examiner repeatability and agreement of corneal pachymetry map measurement by time-domain and Fourier-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 248, 1647–1656 (2010). https://doi.org/10.1007/s00417-010-1360-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-010-1360-7

Keywords

Navigation