Skip to main content

Advertisement

Log in

Thickness of photoreceptor layers in polypoidal choroidal vasculopathy and central serous chorioretinopathy

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To evaluate retinal thickness using spectral-domain optical coherence tomography (SD-OCT) with reduced speckle noise in eyes with polypoidal choroidal vasculopathy (PCV) compared to those with normal eyes and those with central serous chorioretinopathy (CSC).

Methods

We retrospectively reviewed cases of foveal serous retinal detachment in 36 eyes of 36 patients with active CSC and 23 eyes of 23 patients with active PCV, and 44 eyes of 44 normal subjects. Patients were examined using SD-OCT with reduced speckle noise, and the thickness of the outer nuclear layer (ONL), photoreceptor inner segment (IS), and photoreceptor outer segment (OS) were measured.

Results

The ONL and IS were thicker in normal eyes than in eyes with CSC or PCV (P < 0.001). The OS was significantly less thick in eyes with PCV than in normal eyes (P < 0.001), whereas there was no significant difference between eyes with CSC and normal eyes. The thickness of IS and OS in eyes with PCV was related to fibrin or hemorrhage being present in the subretinal space. In eyes with PCV, best-corrected visual acuity at baseline correlated with IS thickness (P = 0.023).

Conclusions

Thinning of each photoreceptor layer was observed in the eyes of PCV patients as compared to that observed in the case of normal individuals. The differentiating factors between PCV and CSC, observed using SD-OCT, include the thinning of the OS in eyes with PCV, which makes SD-OCT helpful in differentiating PCV from CSC. More severe photoreceptor alterations were seen in PCV, because fibrin and hemorrhage were present in the subretinal space, which correlated with poorer vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yannuzzi LA, Sorenson J, Spaide RF, Lipson B (1990) Idiopathic polypoidal choroidal vasculopathy (IPCV). Retina 10:1–8

    Article  CAS  PubMed  Google Scholar 

  2. Yannuzzi LA, Wong DW, Sforzolini BS, Goldbaum M, Tang KC, Spaide RF, Freund KB, Slakter JS, Guyer DR, Sorenson JA, Fisher Y, Maberley D, Orlock DA (1999) Polypoidal choroidal vasculopathy and neovascularized age-related macular degeneration. Arch Ophthalmol 117:1503–1510

    CAS  PubMed  Google Scholar 

  3. Yannuzzi LA, Ciardella A, Spaide RF, Rabb M, Freund KB, Orlock DA (1997) The expanding clinical spectrum of idiopathic polypoidal choroidal vasculopathy. Arch Ophthalmol 115:478–485

    CAS  PubMed  Google Scholar 

  4. Sasahara M, Tsujikawa A, Musashi K, Gotoh N, Otani A, Mandai M, Yoshimura N (2006) Polypoidal choroidal vasculopathy with choroidal vascular hyperpermeability. Am J Ophthalmol 142:601–607

    Article  PubMed  Google Scholar 

  5. Yannuzzi LA, Freund KB, Goldbaum M, Scassellati-Sforzolini B, Guyer DR, Spaide RF, Maberley D, Wong DW, Slakter JS, Sorenson JA, Fisher YL, Orlock DA (2000) Polypoidal choroidal vasculopathy masquerading as central serous chorioretinopathy. Ophthalmology 107:767–777

    Article  CAS  PubMed  Google Scholar 

  6. Moorthy RS, Lyon AT, Rabb MF, Spaide RF, Yannuzzi LA, Jampol LM (1998) Idiopathic polypoidal choroidal vasculopathy of the macula. Ophthalmology 105:1380–1385

    Article  CAS  PubMed  Google Scholar 

  7. Yannuzzi LA, Shakin JL, Fisher YL, Altomonte MA (1984) Peripheral retinal detachments and retinal pigment epithelial atrophic tracts secondary to central serous pigment epitheliopathy. Ophthalmology 91:1554–1572

    CAS  PubMed  Google Scholar 

  8. Levine R, Brucker AJ, Robinson F (1989) Long-term follow-up of idiopathic central serous chorioretinopathy by fluorescein angiography. Ophthalmology 96:854–859

    CAS  PubMed  Google Scholar 

  9. Guyer DR, Yannuzzi LA, Slakter JS, Sorenson JA, Ho A, Orlock D (1994) Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch Ophthalmol 112:1057–1062

    CAS  PubMed  Google Scholar 

  10. Piccolino FC, Borgia L (1994) Central serous chorioretinopathy and indocyanine green angiography. Retina 14:231–242

    Article  CAS  PubMed  Google Scholar 

  11. Scheider A, Nasemannn JE, Lund OE (1993) Fluorescein and indocyanine green angiographies of central serous choroidopathy by scanning laser ophthalmoscopy. Am J Ophthalmol 115:50–56

    CAS  PubMed  Google Scholar 

  12. Prunte C, Flammer J (1996) Choroidal capillary and venous congestion in central serous chorioretinopathy. Am J Ophthalmol 121:26–34

    CAS  PubMed  Google Scholar 

  13. Iida T, Kishi S, Hagimura N, Shimizu K (1999) Persistent and bilateral choroidal vascular abnormalities in central serous chorioretinopathy. Retina 19:508–512

    Article  CAS  PubMed  Google Scholar 

  14. Fujimoto H, Gomi F, Wakabayashi T, Sawa M, Tsujikawa M, Tano Y (2008) Morphologic changes in acute central serous chorioretinopathy evaluated by Fourier-domain optical coherence tomography. Ophthalmology 115:1494–1500

    Article  PubMed  Google Scholar 

  15. Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS (2005) Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 112:1734–1746

    Article  PubMed  Google Scholar 

  16. Hangai M, Ojima Y, Gotoh N, Inoue R, Yasuno Y, Makita S, Yamanari M, Yatagai T, Kita M, Yoshimura N (2007) Three-dimensional imaging of macular holes with high-speed optical coherence tomography. Ophthalmology 114:763–773

    Article  PubMed  Google Scholar 

  17. Ooto S, Hangai M, Sakamoto A, Tomidokoro A, Araie M, Otani T, Kishi S, Matsushita K, Maeda N, Shirakashi M, Abe H, Takeda H, Sugiyama K, Saito H, Iwase A, Yoshimura N (2010) Three-dimensional profile of macular retinal thickness in normal Japanese eyes. Invest Ophthalmol Vis Sci 51:465–473

    Article  PubMed  Google Scholar 

  18. Sakamoto A, Hangai M, Yoshimura N (2008) Spectral-domain optical coherence tomography with multiple B-scan averaging for speckle-noise-reduced imaging of retinal diseases. Ophthalmology 115:1071–1078

    Article  PubMed  Google Scholar 

  19. Spaide RF, Klancnik JM Jr (2005) Fundus autofluorescence and central serous chorioretinopathy. Ophthalmology 112:825–833

    Article  PubMed  Google Scholar 

  20. Iida T, Hagimura N, Sato T, Kishi S (2000) Evaluation of central serous chorioretinopathy with optical coherence tomography. Am J Ophthalmol 129:16–20

    Article  CAS  PubMed  Google Scholar 

  21. Matsumoto H, Kishi S, Otani T, Sato T (2008) Elongation of photoreceptor outer segment in central serous chorioretinopathy. Am J Ophthalmol 145:162–168

    Article  PubMed  Google Scholar 

  22. Ojima Y, Hangai M, Sasahara M, Gotoh N, Inoue R, Yasuno Y, Makita S, Yatagai T, Tsujikawa A, Yoshimura N (2007) Three-dimensional imaging of the foveal photoreceptor layer in central serous chorioretinopathy using high-speed optical coherence tomography. Ophthalmology 114:2197–2207

    Article  PubMed  Google Scholar 

  23. Iijima H, Imai M, Gohdo T, Tsukahara S (1999) Optical coherence tomography of idiopathic polypoidal choroidal vasculopathy. Am J Ophthalmol 127:301–305

    Article  CAS  PubMed  Google Scholar 

  24. Iijima H, Iida T, Imai M, Tsukahara S (2000) Optical coherence tomography of orange-red subretinal lesions in eyes with idiopathic polypoidal choroidal vasculopathy. Am J Ophthalmol 129:21–26

    Article  CAS  PubMed  Google Scholar 

  25. Sato T, Kishi S, Watanabe G, Matsumoto H, Mukai R (2007) Tomographic features of branching vascular networks in polypoidal choroidal vasculopathy. Retina 27:589–594

    Article  PubMed  Google Scholar 

  26. Kameda T, Tsujikawa A, Otani A, Sasahara M, Gotoh N, Tamura H, Yoshimura N (2007) Polypoidal choroidal vasculopathy examined with en face optical coherence tomography. Clin Experiment Ophthalmol 35:596–601

    Article  PubMed  Google Scholar 

  27. Kon Y, Iida T, Maruko I, Saito M (2008) The optical coherence tomography-ophthalmoscope for examination of central serous chorioretinopathy with precipitates. Retina 28:864–869

    Article  PubMed  Google Scholar 

  28. Tsujikawa A, Sasahara M, Otani A, Gotoh N, Kameda T, Iwama D, Yodoi Y, Tamura H, Mandai M, Yoshimura N (2007) Pigment epithelial detachment in polypoidal choroidal vasculopathy. Am J Ophthalmol 143:102–111

    Article  PubMed  Google Scholar 

  29. Ojima Y, Hangai M, Sakamoto A, Tsujikawa A, Otani A, Tamura H, Yoshimura N (2009) Improved visualization of polypoidal choroidal vasculopathy lesions using spectral-domain optical coherence tomography. Retina 29:52–59

    Article  PubMed  Google Scholar 

  30. Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, Iliev ME, Frey M, Rothenbuehler SP, Enzmann V, Wolf S (2009) Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci 50:3432–3437

    Article  PubMed  Google Scholar 

  31. Yamada E (1969) Some structural features of the fovea centralis in the human retina. Arch Ophthalmol 82:151–159

    CAS  PubMed  Google Scholar 

  32. Matsumoto H, Sato T, Kishi S (2009) Outer nuclear layer thickness at the fovea determines visual outcomes in resolved central serous chorioretinopathy. Am J Ophthalmol 148:105–110

    Article  PubMed  Google Scholar 

  33. Marmor MF (1999) Mechanisms of fluid accumulation in retinal edema. Doc Ophthalmol 97:239–249

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We wish to thank the imaging specialists of Kyoto University OCT Reading Center (Mayumi Yoshida and Akiko Hirata) for measuring retinal thickness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotaro Ooto.

Additional information

Support

This research was supported in part by a Grant-in-Aid for Scientific Research (21796179) from the Japan Society for the Promotion of Science (JSPS).

All authors have full control of all primary data, and agree to allow Graefe's Archive for Clinical and Experimental Ophthalmology to review our data upon request.

Financial Disclosures

No author has any financial interest/conflict of interest to disclose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

Retinal thickness at the baseline and at last follow-up in subjects over 60 years old without fibrin or hemorrhage in the subretinal space (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ooto, S., Tsujikawa, A., Mori, S. et al. Thickness of photoreceptor layers in polypoidal choroidal vasculopathy and central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 248, 1077–1086 (2010). https://doi.org/10.1007/s00417-010-1338-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-010-1338-5

Keywords

Navigation