Skip to main content

Advertisement

Log in

Linear discriminant analysis and artificial neural network for glaucoma diagnosis using scanning laser polarimetry–variable cornea compensation measurements in Taiwan Chinese population

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To determine whether linear discriminant analysis (LDA) and artificial neural network (ANN) can improve the differentiation between glaucomatous and normal eyes in a Taiwan Chinese population, based on the retinal nerve fiber layer thickness measurement data from scanning laser polarimetry–variable corneal compensation (GDx VCC).

Methods

This study comprised 79 glaucoma (visual field defect, mean deviation: −5.60 ± 4.23 dB) and 86 healthy subjects (visual field defect, mean deviation: −1.44 ± 1.72 dB). Each patient received complete ophthalmological evaluation, standard automated perimetry (SAP), and GDx VCC exam. One eye per subject was considered for further analysis. The area under the receiver operating characteristics (AROC) curve, sensitivity, specificity and the best cut-off value for each parameter were calculated. The diagnostic performance of artificial neural network (ANN) and linear discriminant analysis (LDA) for glaucoma detection using GDx VCC measurements will be compared in this study.

Results

The individual parameter with the best AROC curve for differentiating between normal and glaucomatous eye was nerve fiber indicator (NFI, 0.932). The highest AROCs for the LDA and ANN methods were 0.950 and 0.970 respectively.

Conclusion

NFI, ANN and LDF method demonstrated equal diagnostic power in glaucoma detection in a Taiwan Chinese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bowd C, Chan K, Zangwill LM, Goldbaum MH, Lee TW, Sejnowski TJ, Weinreb RN (2002) Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. Invest Ophthalmol Vis Sci 43:3444–3454

    PubMed  Google Scholar 

  2. Bowd C, Medeiros FA, Zhang Z, Zangwill LM, Hao J, Lee TW, Sejnowski TJ, Weinreb RN, Goldbaum MH (2005) Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements. Invest Ophthalmol Vis Sci 46:1322–1329

    Article  PubMed  Google Scholar 

  3. Brusini P, Salvetat ML, Parisi L, Zeppieri M, Tosoni C (2005) Discrimination between normal and early glaucomatous eyes with scanning laser polarimeter with fixed and variable corneal compensator settings. Eur J Ophthalmol 15:468–476

    PubMed  CAS  Google Scholar 

  4. Dash M, Liu H, Yao J (1997) Dimensionality Reduction of Unsupervised Data. Proceedings of the Ninth IEEE International Conference on Tools with AI (ICTAI'97), Newport Beach, CA, pp 532–539

  5. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    Article  PubMed  CAS  Google Scholar 

  6. Essock EA, Zheng Y, Gunvant P (2005) Analysis of GDx-VCC polarimetry data by Wavelet-Fourier analysis across glaucoma stages. Invest Ophthalmol Vis Sci 46:2838–2847

    Article  PubMed  Google Scholar 

  7. Garway-Heath D, Hitchings RA (1998) Sources of bias in studies of optic disc and retinal nerve fibre layer morphology. Br J Ophthalmol 82:986

    Article  PubMed  CAS  Google Scholar 

  8. Garway-Heath DF, Greaney MJ, Caprioli J (2002) Correction for the erroneous compensation of anterior segment birefringence with the scanning laser polarimeter for glaucoma diagnosis. Invest Ophthalmol Vis Sci 43:1465–1474

    PubMed  Google Scholar 

  9. Greenfield DS, Knighton RW, Feuer W, Schiffman JC, Zangwill L, Weinreb RN (2002) Correction for corneal polarization axis improves the discriminating power of scanning laser polarimetry. Am J Ophthalmol 134:27–33

    Article  PubMed  Google Scholar 

  10. Haddad WM, Chellaboina VS, Nersesov S (2006) Thermodynamics: a dynamical systems approach. IEEE Transactions on Automatic Control 51:1217–1225

    Article  Google Scholar 

  11. Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843

    PubMed  CAS  Google Scholar 

  12. Huang ML, Chen HY (2005) Development and comparison of automated classifiers for glaucoma diagnosis using stratus optical coherence tomography. Invest Ophthalmol Vis Sci 46:4121–4129

    Article  PubMed  Google Scholar 

  13. Iester M, Jonas JB, Mardin CY, Budde WM (2000) Discrimination analysis models for early detection of glaucomatous optic disc changes. Br J Ophthalmol 84:464–468

    Article  PubMed  CAS  Google Scholar 

  14. Jonas JB, Budde WM, Panda-Jonas S (1999) Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol 43:293–320

    Article  PubMed  CAS  Google Scholar 

  15. Kleinbaum DG, Kupper LL, Muller KE (1998) Applied regression analysis and other multivariate methods, 2nd edn. PSW-Kent, Boston

    Google Scholar 

  16. Lambert FL (2002) A cracked crutch for supporting entropy discussions. J Chem Educ 79:187–192

    Article  CAS  Google Scholar 

  17. Medeiros FA, Ng D, Zangwill LM, Sample PA, Bowd C, Weinreb RN (2007) The effects of study design and spectrum bias on the evaluation of diagnostic accuracy of confocal scanning laser ophthalmoscopy in glaucoma. Invest Ophthalmol Vis Sci 48:214–222

    Article  PubMed  Google Scholar 

  18. Medeiros FA, Susanna RJ (2003) Comparison of algorithms for detection of localized nerve fiber layer defects using scanning laser polarimetry. Br J Ophthalmol 87:413–419

    Article  PubMed  CAS  Google Scholar 

  19. Medeiros FA, Zangwill LM, Bowd C, Mohammadi K, Weinreb RN (2004) Comparison of scanning laser polarimetry using variable corneal compensation and retinal nerve fiber layer photography for detectionof glaucoma. Arch Ophthalmol 122:698–704

    Article  PubMed  Google Scholar 

  20. Poinoosawmy D, Tan JC, Bunce C, Hitchings RA (2001) The ability of the GDx nerve fiber analyzer neural network to diagnose glaucoma. Graefes Arch Clin Exp Ophthalmol 239:122–127

    Article  PubMed  CAS  Google Scholar 

  21. Quigley HA, Addicks EM, Green WR (1982) Optic nerve damage in human glaucoma III: quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, apilledema and toxic neuropathy. Arch Ophthalmol 100:135–146

    PubMed  CAS  Google Scholar 

  22. Raimundo IM, Narayanaswamy R (2001) Simultaneous determination of relative humidity and ammonia in air employing an optical fibre sensor and artificial neural network. Sens Actuators B 74:60–68

    Article  Google Scholar 

  23. Reus NJ, Lemij HG (2004) Diagnostic accuracy of the GDx VCC for glaucoma. Ophthalmology 111:1860–1865

    Article  PubMed  Google Scholar 

  24. Sommer A, Miller NR, Pollack I, Maumenee AE, George T (1977) The nerve fiber layer in the diagnosis of glaucoma. Arch Ophthalmol 95: 2149–2156

    PubMed  CAS  Google Scholar 

  25. Tomatis S, Bono A, Bartoli C et al (2003) Automated melanoma detection: multispectral imaging and neural network approach for classification. American Association of Physicists in Medicine 2:212–221

    Google Scholar 

  26. Vapnik V (2000) The Nature of Statistical Learning Theory, 2nd edn. Springer, New York

    Google Scholar 

  27. Weinreb RN, Bowd C, Zangwill LM (2003) Glaucoma detection using scanning laser polarimetry with variable corneal polarization compensation. Arch Ophthalmol 120:218–224

    Google Scholar 

  28. Weinreb RN, Zangwill L, Berry CC, Bathija R, Sample PA (1998) Detection of glaucoma with scanning laser polarimetry. Arch Ophthalmol 116:1583–1619

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank for the National Science Council of the Republic of China for financially supporting this research under Contract No. 97-2628-E-167-001-MY3& DMR-93-046, DMR-94-043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin-Yi Chen.

Additional information

The authors have full control of all primary data, and we agree to allow Graefe's Archive for Clinical and Experimental Ophthalmology to review our data.

Commercial relationships policy: N

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, ML., Chen, HY., Huang, WC. et al. Linear discriminant analysis and artificial neural network for glaucoma diagnosis using scanning laser polarimetry–variable cornea compensation measurements in Taiwan Chinese population. Graefes Arch Clin Exp Ophthalmol 248, 435–441 (2010). https://doi.org/10.1007/s00417-009-1259-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-009-1259-3

Keywords

Navigation