Skip to main content

Advertisement

Log in

Multifocal electroretinogram for functional evaluation of retinal injury following ischemia–reperfusion in pigs

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Multifocal electroretinogram (mfERG) has the power to discriminate between localized functional losses and overall retinal changes when evaluating retinal injury. So far, full-field ERG has been the gold standard for examining retinal ischemia and the effects of different neuroprotectants in experimental conditions. The aim of the present study was to establish mfERG, with simultaneous fundus monitoring, for analyzing the localized functional response in the retina after ischemia–reperfusion in the porcine eye.

Methods

70 kg pigs underwent pressure-induced retinal ischemia (1 hour) followed by reperfusion. mfERG recordings were obtained before and after ischemia, followed by 1 and 5 hours of reperfusion. Individual components of the summed mfERG responses were correlated to ischemia and the time of reperfusion.

Results

The visual streak area had significantly higher amplitudes than the optic nerve head and the area in between, suggesting that the mfERG monitors localized functional retinal responses. The mfERG recordings were altered following ischemia–reperfusion. In one group of animals, there was a complete flattening of the mfERG waveforms, indicating complete ischemic injury. In the other group of animals, ischemia–reperfusion altered the mfERG such that the implicit time was increased (20.82 ± 0.18 before ischemia and 21.57 ± 0.21 after ischemia and 1 hour of reperfusion, in the visual streak area, p < 0.05) and the amplitude was decreased (13.16 ± 2.3 before ischemia and 11.47 ± 0.88 after ischemia and 1 hour of reperfusion, in the visual streak area, p < 0.001), suggesting partial ischemic injury.

Conclusions

In conclusion, the porcine model of pressure-induced retinal ischemia–reperfusion results in mfERG changes, typical for retinal ischemia. mfERG may be a useful tool for evaluating and monitoring localized cone dysfunction after an ischemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J (2004) Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 23:91–147

    Article  CAS  PubMed  Google Scholar 

  2. Curtis TM, Scholfield CN (2004) The role of lipids and protein kinase Cs in the pathogenesis of diabetic retinopathy. Diabetes Metab Res Rev 20:28–43

    Article  CAS  PubMed  Google Scholar 

  3. Schmetterer L, Wolzt M (1999) Ocular blood flow and associated functional deviations in diabetic retinopathy. Diabetologia 42:387–405

    Article  CAS  PubMed  Google Scholar 

  4. Sabates R, Hirose T, McMeel JW (1983) Electroretinography in the prognosis and classification of central retinal vein occlusion. Arch Ophthalmol 101:232–235

    CAS  PubMed  Google Scholar 

  5. Marmor MF, Zrenner E (1998) Standard for clinical electroretinography (1999 update). International Society for Clinical Electrophysiology of Vision. Doc Ophthalmol 97:143–156

    Article  PubMed  Google Scholar 

  6. Sutter EE, Tran D (1992) The field topography of ERG components in man-I. The photopic luminance response. Vision Res 32:433–446

    Article  CAS  PubMed  Google Scholar 

  7. Lalonde MR, Chauhan BC, Tremblay F (2006) Retinal ganglion cell activity from the multifocal electroretinogram in pig: optic nerve section, anaesthesia and intravitreal tetrodotoxin. J Physiol 570:325–338

    CAS  PubMed  Google Scholar 

  8. Voss Kyhn M, Kiilgaard JF, Lopez AG, Scherfig E, Prause JU, la Cour M (2007) The multifocal electroretinogram (mfERG) in the pig. Acta Ophthalmol Scand 85:438–444

    Article  PubMed  Google Scholar 

  9. Morén H, Undren P, Gesslein B, Olivecrona GK, Andreasson S, Malmsjö M (2009) The porcine retinal vasculature accessed using an endovascular approach, a new experimental model for retinal ischemia. Invest Ophthalmol Vis Sci 50:5504–5510, doi:10.1167/iovs.09-3529

    Article  PubMed  Google Scholar 

  10. Rootman J (1971) Vascular system of the optic nerve head and retina in the pig. Br J Ophthalmol 55:808–819

    Article  CAS  PubMed  Google Scholar 

  11. Ruiz-Ederra J, Garcia M, Hernandez M, Urcola H, Hernandez-Barbachano E, Araiz J, Vecino E (2005) The pig eye as a novel model of glaucoma. Exp Eye Res 81:561–569, doi:S0014-4835(05)00106-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  12. Hendrickson A, Hicks D (2002) Distribution and density of medium- and short-wavelength selective cones in the domestic pig retina. Exp Eye Res 74:435–444, doi:10.1006/exer.2002.1181

    Article  CAS  PubMed  Google Scholar 

  13. Hayreh SS (1983) Classification of central retinal vein occlusion. Ophthalmology 90:458–474

    CAS  PubMed  Google Scholar 

  14. Larsson J, Andreasson S (2001) Photopic 30 Hz flicker ERG as a predictor for rubeosis in central retinal vein occlusion. Br J Ophthalmol 85:683–685

    Article  CAS  PubMed  Google Scholar 

  15. Kretschmann U, Seeliger M, Ruether K, Usui T, Zrenner E (1998) Spatial cone activity distribution in diseases of the posterior pole determined by multifocal electroretinography. Vision Res 38:3817–3828

    Article  CAS  PubMed  Google Scholar 

  16. Karpe G (1945) The basis of clinical electroretinograph. Acta Ophthalmol 24:1–21

    Google Scholar 

  17. Henkes HE (1953) Electroretinography in circulatory disturbances of the retina. I. Electroretinogram in cases of occlusion of central retinal vein or of one of its branches. AMA Arch Ophthalmol 49:190–201

    CAS  PubMed  Google Scholar 

  18. Barnett NL, Osborne NN (1995) Prolonged bilateral carotid artery occlusion induces electrophysiological and immunohistochemical changes to the rat retina without causing histological damage. Exp Eye Res 61:83–90

    Article  CAS  PubMed  Google Scholar 

  19. Block F, Schwarz M (1998) The b-wave of the electroretinogram as an index of retinal ischemia. Gen Pharmacol 30:281–287

    Article  CAS  PubMed  Google Scholar 

  20. Chao HM, Osborne NN (2001) Topically applied clonidine protects the rat retina from ischaemia/reperfusion by stimulating alpha(2)-adrenoceptors and not by an action on imidazoline receptors. Brain Res 904:126–136

    Article  CAS  PubMed  Google Scholar 

  21. Rosenbaum DM, Rosenbaum PS, Singh M, Gupta G, Gupta H, Li B, Roth S (2001) Functional and morphologic comparison of two methods to produce transient retinal ischemia in the rat. J Neuroophthalmol 21:62–68

    CAS  PubMed  Google Scholar 

  22. Grozdanic SD, Sakaguchi DS, Kwon YH, Kardon RH, Sonea IM (2003) Functional characterization of retina and optic nerve after acute ocular ischemia in rats. Invest Ophthalmol Vis Sci 44:2597–2605

    Article  PubMed  Google Scholar 

  23. Hvarfner C, Andreasson S, Larsson J (2006) Multifocal electroretinography and fluorescein angiography in retinal vein occlusion. Retina 26:292–296, doi:00006982-200603000-00007 [pii]

    Article  PubMed  Google Scholar 

  24. Ng YF, Chan HH, To CH, Yap MK (2008) The characteristics of multifocal electroretinogram in isolated perfused porcine eye: cellular contributions to the in vitro porcine mfERG. Doc Ophthalmol 117:205–214, doi:10.1007/s10633-008-9124-y

    Article  PubMed  Google Scholar 

  25. Yu DY, Cringle SJ (2001) Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 20:175–208, doi:S1350-9462(00)00027-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  26. Kretschmann U, Bock M, Gockeln R, Zrenner E (2000) Clinical applications of multifocal electroretinography. Doc Ophthalmol 100:99–113

    Article  CAS  Google Scholar 

  27. Fortune B, Schneck ME, Adams AJ (1999) Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 40:2638–2651

    CAS  PubMed  Google Scholar 

  28. Hayreh SS, Weingeist TA (1980) Experimental occlusion of the central artery of the retina. IV: Retinal tolerance time to acute ischaemia. Br J Ophthalmol 64:818–825

    Article  CAS  PubMed  Google Scholar 

  29. Marmor MF, Dalal R (1993) Irregular retinal and RPE damage after pressure-induced ischemia in the rabbit. Invest Ophthalmol Vis Sci 34:2570–2575

    CAS  PubMed  Google Scholar 

  30. Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24:39–73

    Article  PubMed  Google Scholar 

  31. Sigal IA, Flanagan JG, Ethier CR (2005) Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 46:4189–4199

    Article  PubMed  Google Scholar 

  32. la Cour M, Kiilgaard JF, Eysteinsson T, Wiencke AK, Bang K, Dollerup J, Jensen PK, Stefansson E (2000) Optic nerve oxygen tension: effects of intraocular pressure and dorzolamide. Br J Ophthalmol 84:1045–1049

    Article  PubMed  Google Scholar 

  33. Andreasson S, Tornqvist K, Ehinger B (1993) Full-field electroretinograms during general anesthesia in normal children compared to examination with topical anesthesia. Acta Ophthalmol (Copenh) 71:491–495

    Article  CAS  Google Scholar 

  34. Whitacre MM, Ellis PP (1984) Outpatient sedation for ocular examination. Surv Ophthalmol 28:643–652

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Swedish Medical Research Council, Lund University Faculty of Medicine, the Swedish Government Grant for Clinical Research, the Lund University Hospital Research Grants, the Swedish Medical Association, the Royal Physiographic Society in Lund, the Åke Wiberg Foundation, the Anders Otto Swärd Foundation/Ulrika Eklund Foundation, the Magn Bergvall Foundation, the Crafoord Foundation, the Anna-Lisa and Sven-Erik Nilsson Foundation, the Jeanssons Foundation, Kronprinsessan Margaretas Arbetsnämnd för synskadade, Synskadade i Malmöhus län, Anna och Edvin Berger’s Foundation, the Lars Hiertas Minne Foundation and the Märtha Lundqvist’s Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malin Malmsjö.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morén, H., Gesslein, B., Andreasson, S. et al. Multifocal electroretinogram for functional evaluation of retinal injury following ischemia–reperfusion in pigs. Graefes Arch Clin Exp Ophthalmol 248, 627–634 (2010). https://doi.org/10.1007/s00417-009-1237-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-009-1237-9

Keywords

Navigation