Skip to main content

Advertisement

Log in

Improved retinal function after trabeculectomy in glaucoma patients

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate retinal function after reduction of intraocular pressure (IOP) by filtration surgery in patients with medically uncontrolled glaucoma.

Methods

Eleven patients (11 eyes) with medically uncontrolled glaucoma underwent trabeculectomy. Clinical investigation, visual field (testing with standard automated perimetry (SAP–Humphrey), optical coherence tomography (OCT), full-field electroretinography (full-field ERG) and multifocal electroretinography (mfERG) were performed preoperatively as well as 2 and 6 months after surgery.

Design

Interventional prospective, consecutive case series.

Results

No significant reduction was seen in mean log MAR visual acuity 2 or 6 months after filtration surgery. The mean preoperative intraocular pressure of 27.1 (±6.2) mmHg decreased to 19.0(±6.1) mmHg 2 months after surgery and to 17.1 (± 3.4) mmHg 6 months after surgery (both p = 0.001). The reduction in IOP significantly decreased the number of anti-glaucoma agents used, from 3.7 ± 1.6 at baseline to 0.8 ± 0.9 2 months after surgery and to 1.3 ± 1.2 6 months after surgery (p = 0.004 and p = 0.008 respectively). The results of SAP, OCT and full-field ERG did not show any significant difference between pre- and postoperative values at any point in time. No significant improvement was found with regard to the first positive peak (P1) amplitudes in the macular retina (area 1) or in the perimacular retina/periphery (area 2) when measured with mfERG 2 months after surgery. The mfERG examinations revealed significantly improved P1 amplitudes 6 months after surgery in both area 1 and area 2, compared with the preoperative values (p = 0.042 and p = 0.014 respectively). The implicit time of P1 decreased significantly 6 months after surgery in area 2 compared with the preoperative values (p = 0.023).

Conclusion

A significant lowering of IOP seems to improve the function of the central retina, as demonstrated by increased amplitudes and reduced implicit times assessed with mfERG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sommer A (1989) Intraocular pressure and glaucoma. Am J Ophthalmol 107:186–188

    CAS  PubMed  Google Scholar 

  2. The Agis investigators, The Advanced Glaucoma Intervention Study (AGIS):7 (2000) The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol 130:429–440

    Article  Google Scholar 

  3. Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M, Early Manifest Glaucoma Trial Group (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120:1268–1279

    Google Scholar 

  4. Quigley HA (1982) Childhood glaucoma: results with trabeculectomy and study of reversible cupping. Ophthalmology 89:219–226

    CAS  PubMed  Google Scholar 

  5. Funk J (1990) Increase of neuroretinal rim area after surgical intraocular pressure reduction. Ophthalmic Surg 21:585–588

    CAS  PubMed  Google Scholar 

  6. Katz LJ, Spaeth GL, Cantor LB, Poryzees EM, Steinmann WC (1989) Reversible optic disk cupping and visual field improvement in adults with glaucoma. Am J Ophthalmol 107:485–492

    CAS  PubMed  Google Scholar 

  7. Kotecha A, Siriwardena D, Fitzke FW, Hitchings RA, Khaw PT (2001) Optic disk changes following trabeculectomy: longitudinal study and localisation of change. Br J Ophthalmol 85:956–961

    Article  CAS  PubMed  Google Scholar 

  8. Lesk MR, Spaeth GL, Azuara-Blanco A, Araujo SV, Katz LJ, Terebuh AK, Wilson RP, Moster MR, Schmidt CM (1999) Reversal of optic disk cupping after glaucoma surgery analyzed with a scanning laser tomograph. Ophthalmology 106:1013–1018

    Article  CAS  PubMed  Google Scholar 

  9. Paranhos A, Lima MC, Salim S, Caprioli J, Shields MB (2006) Trabeculectomy and optic nerve head topography. Braz J Med Biol Res 39:149–155

    PubMed  Google Scholar 

  10. Topouzis F, Peng F, Kotas-Neumann R, Garcia R, Sanguinet J, Yu F, Coleman AL (1999) Longitudinal changes in optic disk topography of adult patients after trabeculectomy. Ophthalmology 106:1147–1151

    Article  CAS  PubMed  Google Scholar 

  11. Tsai CS, Shin DH, Wan JY, Zeiter JH (1991) Visual field global indices in patients with reversal of glaucomatous cupping after intraocular pressure reduction. Ophthalmology 98:1412–1419

    CAS  PubMed  Google Scholar 

  12. Raitta C, Tomita G, Vesti E, Harju M, Nakao H (1996) Optic disk tomography before and after trabeculectomy in advanced glaucoma. Ophthalmic Surg 27(5):349–354

    CAS  Google Scholar 

  13. Yoshikawa K, Inoue Y (1999) Changes in optic disk parameters after intraocular pressure reduction in adult glaucoma patients. Jpn J Ophthalmol 43:225–231

    Article  CAS  PubMed  Google Scholar 

  14. Aydin A, Wollstein G, Price LL, Fujimoto JG, Schuman JS (2003) Optical coherence tomography assessment of retinal nerve fiber layer thickness changes after glaucoma surgery. Ophthalmology 110:1506–1511

    Article  PubMed  Google Scholar 

  15. Gandolfi SA (1995) Improvement of visual field indices after surgical reduction of intraocular pressure. Ophthalmic Surg 26:121–126

    CAS  PubMed  Google Scholar 

  16. Gandolfi SA, Cimino L, Sangermani C, Ungaro N, Mora P, Tardini MG (2005) Improvement of spatial contrast sensitivity threshold after surgical reduction of intraocular pressure in unilateral high-tension glaucoma. Invest Ophthalmol Vis Sci 46:197–201

    Article  PubMed  Google Scholar 

  17. Holmin C, Thorburn W, Krakau CET (1988) Treatment versus no treatment in chronic open angle glaucoma. Acta Ophthalmol 66:170–173

    Article  CAS  Google Scholar 

  18. Tavares IM, Melo LA, Prata JA, Galhardo R, Paranhos A, Mello PA (2006) No changes in anatomical and functional glaucoma evaluation after trabeculectomy. Graefes Arch Clin Exp Ophthalmol 244:545–550

    Article  PubMed  Google Scholar 

  19. Hare WA, Ton H, Ruiz G, Feldmann B, Wijono M, WoldeMussie E (2001) Characterization of retinal injury using ERG measures obtained with both conventional and multifocal methods in chronic ocular hypertensive primates. Invest Ophthalmol Vis Sci 42:127–136

    CAS  PubMed  Google Scholar 

  20. Hasegawa S, Takagi M, Usui T, Takada R, Abe H (2000) Waveform changes of the first-order multifocal electroretinogram in patients with glaucoma. Invest Ophthalmol Vis Sci 41:1597–1603

    CAS  PubMed  Google Scholar 

  21. Holcombe DJ, Lengefeld N, Gole GA, Barnett NL (2008) Selective inner retinal dysfunction precedes ganglion cell loss in a mouse glaucoma model. Br J Ophthalmol 92:683–688

    Article  CAS  PubMed  Google Scholar 

  22. Raz D, Perlman I, Percicot Ch, Lambrou GN, Ofri R (2003) Functional damage to inner and outer retinal cells in experimental glaucoma. Invest Ophthalmol Vis Sci 44:3675–3684

    Article  PubMed  Google Scholar 

  23. Ventura LM, Porciatti V (2005) Restoration of retinal ganglion cell function in early glaucoma after intraocular pressure reduction. Ophthalmology 112:20–27

    Article  PubMed  Google Scholar 

  24. Hood DC, Xu L, Thienprasiddhi Ph, Greenstein VC, Odel JG, Grippo TM, Liebmann JM, Ritch R (2005) The pattern electroretinogram in glaucoma patients with confirmed visual field deficits. Invest Ophthalmol Vis Sci 46:2411–2418

    Article  PubMed  Google Scholar 

  25. Ventura LM, Porciatti V, Ishida K, Feuer W, Parrish RK (2005) Pattern electroretinogram abnormality and glaucoma. Ophthalmology 112:10–19

    Article  PubMed  Google Scholar 

  26. Bayer AU, Neuhardt T, May AC, Martus P, Maag KP, Brodie S, Lutjen-Drecoll E, Podos SM, Mittag T (2001) Retinal morphology and ERG response in the DBA/2NNia mouse model of angle closure glaucoma. Invest Ophthalmol Vis Sci 42:1258–1265

    CAS  PubMed  Google Scholar 

  27. Chan HL, Brown B (1999) Multifocal ERG changes in glaucoma. Ophthal Physiol Opt 19:306–316

    Article  CAS  Google Scholar 

  28. Chan HL, Brown B (2000) Pilot study of the multifocal electroretinogram in ocular hypertension. Br J Ophthalmol 84:1147–1153

    Article  CAS  PubMed  Google Scholar 

  29. Fazio DT, Heckenlively JR, Martin DA, Christensen RE (1986) The electroretinogram in advanced open-angle glaucoma. Doc Ophthalmol 63:45–54

    Article  CAS  PubMed  Google Scholar 

  30. Nork TM, Ver Hoeve JN, Poulsen GL, Nickells RW, Davis MD, Weber AJ, Vaegan SSH, Lemley HL, Millecchia LL (2000) Swelling and loss of photoreceptors in chronic human and experimental glaucomas. Arch Ophthalmol 118:235–245

    CAS  PubMed  Google Scholar 

  31. Panda S, Jonas JB (1992) Decreased photoreceptor count in human eyes with secondary angle-closure glaucoma. Invest Ophthalmol Vis Sci 33:2532–2536

    CAS  PubMed  Google Scholar 

  32. Marmor MF, Holder GE, Seeliger MW, Yamamoto Sh (2004) Standard for clinical Electroretinography (2004update). Doc Ophthalmol 108:107–114

    Article  PubMed  Google Scholar 

  33. Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Palmowski-Wolfe AM (2008) ISCEV guidelines for clinical multifocal electroretinography (2007 edition). Doc Ophthalmol 116:1–11

    Article  PubMed  Google Scholar 

  34. Costa VP, Smith M, Spaeth GL, Gandham S, Markovitz B (1993) Loss of visual acuity after trabeculectomy. Ophthalmology 100:599–612

    CAS  PubMed  Google Scholar 

  35. Popovic V, Sjöstrand J (1991) Long-term outcome following trabeculectomy: I Retrospective analysis of intraocular pressure regulation and cataract formation. Acta Ophthalmol 69:299–304

    Article  CAS  Google Scholar 

  36. Wördehoff UV, Palmowski AH, Heinemann-Vernaleken B, Allgayer R, Ruprecht KW (2004) Influence of cataract on the multifocal ERG recording — a pre- and postoperative comparison. Doc Ophthalmol 108:67–75

    Article  PubMed  Google Scholar 

  37. Bindlish R, Condon GP, Schlosser JD, D’Antonio J, Lauer KB, Lehrer R (2002) Efficacy and safety of mitomycin-C in primary trabeculectomy five-year follow-up. Ophthalmology 109:1336–1341

    Article  PubMed  Google Scholar 

  38. Costa VP, Arcieri ES (2007) Hypotony maculopathy. Acta Ophthalmol 85:586–597

    Article  Google Scholar 

  39. Fannin LA, Schiffman JC, Budenz DL (2003) Risk factors for hypotony maculopathy. Ophthalmology 110:1185–1191

    Article  PubMed  Google Scholar 

  40. Law SK, Nguyen AM, Coleman AL, Caprioli J (2007) Severe loss of central vision in patients with advanced glaucoma undergoing trabeculectomy. Arch Ophthalmol 125(8): 1044–1050

    Article  Google Scholar 

  41. Topouzis F, Tranos P, Koskosas A, Pappas Th, Anastasopoulas E, Dimitrakos S, Wilson MR (2005) Risk of sudden visual loss following filtration surgery in end-stage glaucoma. Am J Ophthalmol 140:661–667

    PubMed  Google Scholar 

  42. Leydhecker G (1950) The electroretinogram in glaucomatous eyes. Br J Ophthalmol 34:550–554

    Article  CAS  PubMed  Google Scholar 

  43. Vaegan, Graham SL, Goldberg I, Buckland L, Hollows FC (1995) Flash and pattern electroretinogram changes with optic atrophy and glaucoma. Exp Eye Res 60(6):697–706

    Article  CAS  PubMed  Google Scholar 

  44. Velten IM, Korth M, Horn FK (2001) The a-wave of dark adapted electroretinogram in glaucomas: are photoreceptors affected? Br J Ophthalmol 85:397–402

    Article  CAS  PubMed  Google Scholar 

  45. Velten IM, Horn FK, Korth M, Velten K (2001) The b-wave of the dark adapted flash electroretinogram in patients with advanced asymmetrical glaucoma and normal subjects. Br J Ophthalmol 85:403–409

    Article  CAS  PubMed  Google Scholar 

  46. Bui BV, Edmunds B, Cioffi GA, Fortune B (2005) The gradient retinal functional changes during acute intraocular pressure elevation. Invest Ophthalmol Vis Sci 46:202–213

    Article  PubMed  Google Scholar 

  47. Chauhan BC, Pan J, Archibald ML, Le Vatte TL, Kelly ME, Tremblay F (2002) Effect of intraocular pressure on optic disc topography, electroretinography and axonal loss in a chronic pressure-induced rat model of optic nerve damage. Invest Ophthalmol Vis Sci 43:2969–2976

    PubMed  Google Scholar 

  48. Kendell KR, Quigley HA, Kerrigan LA, Pease ME, Quigley EN (1995) Primary open-angle glaucoma is not associated with photoreceptor loss. Invest Ophthalmol Vis Sci 36:200–205

    CAS  PubMed  Google Scholar 

  49. Sutter E, Tran D (1992) The field topography of ERG components in man. Vision Res 32:433–446

    Article  CAS  PubMed  Google Scholar 

  50. Brown B (2008) Structural and functional imaging of the retina: new ways to diagnose and assess retinal disease. Clin Exp Optom 91:504–514

    Article  PubMed  Google Scholar 

  51. Chu PH, Chan HL, Ng Y, Brown B, Siu AW, Beale BA, Gilger BC, Wong F (2008) Porcine global flash multifocal electroretinogram: possible mechanisms for the glaucomatous changes in contrast response function. Vision Research 48:1726–1734

    Article  PubMed  Google Scholar 

  52. Hood DC, Greenstain VC, Holopigian K, Bauer R, Firoz B, Liebmann JM, Odel JG, Ritch R (2000) An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Invest Ophthalmol Vis Sci 41:1570–1579

    CAS  PubMed  Google Scholar 

  53. Lalonde MR, Chauhan BC, Tremblay F (2006) Retinal ganglion cell activity from the multifocal electroretinogram in pig: optic nerve section, anaesthesia and intravitreal tetrodotoxin. J Physiol 570(Pt 2):325–338

    CAS  PubMed  Google Scholar 

  54. Spadea L, Giuffré I, Bianco G, Balestrazzi E (1995) PERG and P-VEP after surgical trabeculectomy in primary open-angle glaucoma. Eur J Ophthalmol 5:92–95

    CAS  PubMed  Google Scholar 

  55. Kanadani FN, Hood DC, Grippo TM, Wangsupadilok B, Harizman N, Greenstein VC, Liebmann JM, Ritch R (2006) Structural and functional assessment of the macular region in patients with glaucoma. Br J Ophthalmol 90:1393–1397

    Article  CAS  PubMed  Google Scholar 

  56. Budenz DL, Anderson DR, Varma R, Schuman J, Cantor L, Savell J, Greenfield DS, Patella VM, Quigly HA, Tielsch J (2007) Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT. Ophthalmology 114:1046–1052

    Article  PubMed  Google Scholar 

  57. Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A, Mancini R, Lederer D, Voskanian S, Velazquez L, Pakter H, Pedut-Kloizman T, Fujimoto JG, Mattox C (2003) Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 110:177–189

    Article  PubMed  Google Scholar 

  58. Leung Ch, Chan W-M, Yung WH, Ng A, Woo J, Tsang M-K, Tse R (2005) Comparison of macular and peripapillary measurements for the detection of glaucoma. An optical coherence tomography study. Ophthalmology 112:391–400

    Article  PubMed  Google Scholar 

  59. Ojima T, Tanabe T, Hangai M, Yu S, Morishita S, Yoshimura N (2007) Measurement of retinal nerve fiber layer thickness and macular volume for glaucoma detection using optical coherence tomography. Jpn J Ophthalmol 51:197–203

    Article  PubMed  Google Scholar 

  60. Wollstein G, Schuman JS, Price LL, Aydin A, Beaton SA, Stark PC, Fujimoto JG, Ishikawa H (2004) Optical coherence tomography (OCT) and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol 138:218–225

    Article  PubMed  Google Scholar 

  61. Kubata T, Jonas JB, Naumann GO (1993) Decreased choroidal thickness in eyes with secondary angle closure glaucoma. An aetiological factor for deep retinal changes in glaucoma? Br J Ophthalmol 77:430–432

    Article  Google Scholar 

  62. Spraul CW, Lang GE, Lang GK, Grossniklaus HE (2002) Morphometric changes of the choriocapillaris and the choroidal vasculature in eyes with advanced glaucomatous changes. Vis Res 42:923–932

    Article  PubMed  Google Scholar 

  63. Pelzel HR, Schlamp CL, Poulsen GL, Ver Hoeve JA, Nork TM, Nickells RW (2006) Decrease of cone opsin m RNA in experimental ocular hypertension. Molecular Vision 12:1272–1282

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Ing-Marie Holst and Boel Nilsson for their skilful technical assistance. This study was supported by “Stiftelsen för synskadade i f.d. Malmöhus län” (The foundation for the visually impaired in the former county of Malmöhus), and grants from the Swedish Medical Research Council and the Foundation Fighting Blindness, Owings Mills, Maryland, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Wittström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittström, E., Schatz, P., Lövestam-Adrian, M. et al. Improved retinal function after trabeculectomy in glaucoma patients. Graefes Arch Clin Exp Ophthalmol 248, 485–495 (2010). https://doi.org/10.1007/s00417-009-1220-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-009-1220-5

Keywords

Navigation