Skip to main content

Advertisement

Log in

Long axial length as risk factor for normal tension glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The high prevalence of normal tension glaucoma (NTG) in the Japanese requires special screening tests other than measurements of only the intraocular pressure (IOP). This study was carried out to determine whether there is a significant association between the axial length of the eye and the presence of NTG.

Methods

We reviewed the medical records of all patients who were scheduled to undergo cataract surgery alone or combined with glaucoma surgery at the same time. There were 87 patients with NTG, 137 with POAG, and 978 non-glaucomatous control cases. The axial length, IOP, curvature of the anterior corneal surface, age, and gender were determined at the time of the operation. If both eyes had surgery, data from only the right eyes were analyzed. An association of these parameters with NTG and POAG was analyzed by logistic regression analysis. The three groups were analyzed for differences in the axial length using the Kruskal-Wallis test followed by the Mann-Whitney U test.

Results

The axial length was significantly associated with NTG (odds = 1.24, P = 0.002) and POAG (odds = 1.28, P = 0.001). The incidence of either POAG or NTG was significantly higher in patients with axial lengths ≥25.0 mm (odds = 2.29, P < 0.001, Fisher’s exact test). The age at the time of cataract surgery was weakly but significantly correlated negatively with the axial length (r = −0.24, P < 0.001, Pearson’s correlation coefficient test). Men had significantly longer axial lengths than women.

Conclusions

Long axial lengths can be considered a risk factor for NTG and POAG, and patients with long axial lengths need to be carefully examined for glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S, Kuwayama Y, Mishima HK, Shimizu H, Tomita G, Inoue Y, Kitazawa Y, Tajimi Study Group, Japan Glaucoma Society (2004) The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study. Ophthalmology 111:1641–1648

    PubMed  Google Scholar 

  2. Boland MV, Quigley HA (2007) Risk factors and open-angle glaucoma: classification and application. J Glaucoma 16:406–418. doi:10.1097/IJG.0b013e31806540a1

    Article  PubMed  Google Scholar 

  3. Adam MF, Belmouden A, Binisti P, Brézin AP, Valtot F, Béchetoille A, Dascotte JC, Copin B, Gomez L, Chaventré A, Bach JF, Garchon HJ (1997) Recurrent mutations in a single exon encoding the evolutionarily conserved olfactomedin-homology domain of TIGR in familial open-angle glaucoma. Hum Mol Genet 6:2091–2097. doi:10.1093/hmg/6.12.2091

    Article  PubMed  CAS  Google Scholar 

  4. Taniguchi F, Suzuki Y, Shirato S, Ohta S (1999) Clinical phenotype of a Japanese family with primary open angle glaucoma caused by a Pro370Leu mutation in the MYOC/TIGR gene. Jpn J Ophthalmol 43:80–84. doi:10.1016/S0021-5155(98)00074-4

    Article  PubMed  CAS  Google Scholar 

  5. Vázquez CM, Herrero OM, Bastús BM, Pérez VD (2000) Mutations in the third exon of the MYOC gene in Spanish patients with primary open angle glaucoma. Ophthalmic Genet 21:109–115. doi:10.1076/1381-6810(200006)21:2;1-8;FT109

    Article  PubMed  Google Scholar 

  6. Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, Héon E, Krupin T, Ritch R, Kreutzer D, Crick RP, Sarfarazi M (2002) Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295:1077–1079. doi:10.1126/science.1066901

    Article  PubMed  CAS  Google Scholar 

  7. Suzuki Y, Iwase A, Araie M, Yamamoto T, Abe H, Shirato S, Kuwayama Y, Mishima HK, Shimizu H, Tomita G, Inoue Y, Kitazawa Y, Tajimi Study Group, Japan Glaucoma Society (2006) Risk factors for open-angle glaucoma in a Japanese population: the Tajimi Study. Ophthalmology 113:1613–1617. doi:10.1016/j.ophtha.2006.03.059

    Article  PubMed  Google Scholar 

  8. Brusini P, Miani F, Tosoni C (2000) Corneal thickness in glaucoma: an important parameter? Acta Ophthalmol Scand Suppl 232:41–42

    PubMed  Google Scholar 

  9. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Kass MA (2002) The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120:714–720

    PubMed  Google Scholar 

  10. Kniestedt C, Lin S, Choe J, Nee M, Bostrom A, Stürmer J, Stamper RL (2006) Correlation between intraocular pressure, central corneal thickness, stage of glaucoma, and demographic patient data: prospective analysis of biophysical parameters in tertiary glaucoma practice populations. J Glaucoma 15:91–97. doi:10.1097/00061198-200604000-00003

    Article  PubMed  Google Scholar 

  11. Congdon NG, Broman AT, Bandeen-Roche K, Grover D, Quigley HA (2006) Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol 141:868–875. doi:10.1016/j.ajo.2005.12.007

    Article  PubMed  Google Scholar 

  12. Aström S, Stenlund H, Lindén C (2007) Incidence and prevalence of pseudoexfoliations and open-angle glaucoma in northern Sweden: II. Results after 21 years of follow-up. Acta Ophthalmol Scand 85:832–837. doi:10.1111/j.1600-0420.2007.00980.x

    Article  PubMed  Google Scholar 

  13. Miller KM, Quigley HA (1987) Comparison of optic disc features in low-tension and typical open-angle glaucoma. Ophthalmic Surg 18:882–889

    PubMed  CAS  Google Scholar 

  14. Chihara E, Tanihara H (1992) Parameters associated with papillomacular bundle defects in glaucoma. Graefes Arch Clin Exp Ophthalmol 230:511–517. doi:10.1007/BF00181770

    Article  PubMed  CAS  Google Scholar 

  15. Chihara E, Takahara S (1993) Positive correlation between rotation of the optic disc and location of glaucomatous scotomata. Perimetry Update 1992/1993:199–205

    Google Scholar 

  16. Morgan J (2000) Optic nerve head structure in glaucoma: astrocytes as mediators of axonal damage. Eye 14:437–444

    PubMed  Google Scholar 

  17. Drance S, Anderson DR, Schulzer M, Collaborative Normal-Tension Glaucoma Study Group (2001) Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol 131:699–708. doi:10.1016/S0002-9394(01)00964-3

    Article  PubMed  CAS  Google Scholar 

  18. Drance SM, Fairclough M, Butler DM, Kottler MS (1997) The importance of disc hemorrhage in the prognosis of chronic open angle glaucoma. Arch Ophthalmol 95:226–228

    Google Scholar 

  19. Sugiyama K, Tomita G, Kitazawa Y, Onda E, Shinohara H, Park KH (1997) The associations of optic disc hemorrhage with retinal nerve fiber layer defect and peripapillary atrophy in normal-tension glaucoma. Ophthalmology 104:1926–1933

    PubMed  CAS  Google Scholar 

  20. Ishida K, Yamamoto T, Sugiyama K, Kitazawa Y (2000) Disk hemorrhage is a significantly negative prognostic factor in normal-tension glaucoma. Am J Ophthalmol 129:707–714. doi:10.1016/S0002-9394(00)00441-4

    Article  PubMed  CAS  Google Scholar 

  21. Shimizu N, Nomura H, Ando F, Niino N, Miyake Y, Shimokata H (2003) Refractive errors and factors associated with myopia in an adult Japanese population. Jpn J Ophthalmol 47:6–12. doi:10.1016/S0021-5155(02)00620-2

    Article  PubMed  Google Scholar 

  22. Abdalla MI, Hamdi M (1970) Applanation ocular tension in myopia and emmetropia. Br J Ophthalmol 54:122–125. doi:10.1136/bjo.54.2.122

    Article  PubMed  CAS  Google Scholar 

  23. Tomlinson A, Phillips CI (1970) Applanation tension and axial length of the eyeball. Br J Ophthalmol 54:548–553. doi:10.1136/bjo.54.8.548

    Article  PubMed  CAS  Google Scholar 

  24. David R, Zangwill LM, Tessler Z, Yassur Y (1985) The correlation between intraocular pressure and refractive status. Arch Ophthalmol 103:1812–1815

    PubMed  CAS  Google Scholar 

  25. Wong TY, Klein BE, Klein R, Knudtson M, Lee KE (2003) Refractive errors, intraocular pressure, and glaucoma in a white population. Ophthalmology 110:211–217. doi:10.1016/S0161-6420(02)01260-5

    Article  PubMed  Google Scholar 

  26. Nomura H, Ando F, Niino N, Shimokata H, Miyake Y (2004) The relationship between intraocular pressure and refractive error adjusting for age and central corneal thickness. Ophthalmic Physiol Opt 24:41–45. doi:10.1046/j.1475-1313.2003.00158.x

    Article  PubMed  Google Scholar 

  27. Jonas JB (2005) Optic disk size correlated with refractive error. Am J Ophthalmol 139:346–348. doi:10.1016/j.ajo.2004.07.047

    Article  PubMed  Google Scholar 

  28. Tay E, Seah SK, Chan SP, Lim AT, Chew SJ, Foster PJ, Aung T (2005) Optic disk ovality as an index of tilt and its relationship to myopia and perimetry. Am J Ophthalmol 139:247–252. doi:10.1016/j.ajo.2004.08.076

    Article  PubMed  Google Scholar 

  29. Chihara E, Sawada A (1990) Atypical nerve fiber layer defects in high myopes with high-tension glaucoma. Arch Ophthalmol 108:228–232

    PubMed  CAS  Google Scholar 

  30. Kawano J, Tomidokoro A, Mayama C, Kunimatsu S, Tomita G, Araie M (2006) Correlation between hemifield visual field damage and corresponding parapapillary atrophy in normal-tension glaucoma. Am J Ophthalmol 142:40–45. doi:10.1016/j.ajo.2006.01.087

    Article  PubMed  Google Scholar 

  31. Jonas JB, Berenshtein E, Holbach L (2004) Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci 45:2660–2665. doi:10.1167/iovs.03-1363

    Article  PubMed  Google Scholar 

  32. Nemeth J, Michelson G, Harazny J (2001) Retinal microcirculation correlates with ocular wall thickness, axial eye length, and refraction in glaucoma patients. J Glaucoma 10:390–395. doi:10.1097/00061198-200110000-00005

    Article  PubMed  CAS  Google Scholar 

  33. Shimada N, Ohno-Matsui K, Harino S, Yoshida T, Yasuzumi K, Kojima A, Kobayashi K, Futagami S, Tokoro T, Mochizuki M (2004) Reduction of retinal blood flow in high myopia. Graefes Arch Clin Exp Ophthalmol 242:284–288. doi:10.1007/s00417-003-0836-0

    Article  PubMed  Google Scholar 

  34. Perkins ES, Phelps CD (1982) Open angle glaucoma, ocular hypertension, low-tension glaucoma, and refraction. Arch Ophthalmol 100:1464–1467

    PubMed  CAS  Google Scholar 

  35. Chihara E, Liu X, Dong J, Takashima Y, Akimoto M, Hangai M, Kuriyama S, Tanihara H, Hosoda M, Tsukahara S (1997) Severe myopia as a risk factor for progressive visual field loss in primary open-angle glaucoma. Ophthalmologica 211:66–71

    Article  PubMed  CAS  Google Scholar 

  36. Mitchell P, Hourihan F, Sandbach J, Wang JJ (1999) The relationship between glaucoma and myopia: the Blue Mountains Eye Study. Ophthalmology 106:2010–1015. doi:10.1016/S0161-6420(99)90416-5

    Article  PubMed  CAS  Google Scholar 

  37. Ramakrishnan R, Nirmalan PK, Krishnadas R, Thulasiraj RD, Tielsch JM, Katz J, Friedman DS, Robin AL (2003) Glaucoma in a rural population of southern India: the Aravind comprehensive eye survey. Ophthalmology 110:1484–1490. doi:10.1016/S0161-6420(03)00564-5

    Article  PubMed  CAS  Google Scholar 

  38. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ (2002) The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol 86:238–242. doi:10.1136/bjo.86.2.238

    Article  PubMed  Google Scholar 

  39. Grødum K, Heijl A, Bengtsson B (2001) Refractive error and glaucoma. Acta Ophthalmol Scand 79:560–566. doi:10.1034/j.1600-0420.2001.790603.x

    Article  PubMed  Google Scholar 

  40. Leighton DA, Tomlinson A (1973) Ocular tension and axial length of the eyeball in open-angle glaucoma and low tension glaucoma. Br J Ophthalmol 57:499–502. doi:10.1136/bjo.57.7.499

    Article  PubMed  CAS  Google Scholar 

  41. Greve GL, Langerhorst CT, van den Berg TTJP (1986) Perimetry and other visual function tests in glaucoma. In: Cairns JE (ed) Glaucoma. Grune & Stratton, London

    Google Scholar 

  42. Mark HH, Robbins KP, Mark TL (2002) Axial length in applanation tonometry. J Cataract Refract Surg 28:504–506. doi:10.1016/S0886-3350(01)01091-4

    Article  PubMed  Google Scholar 

  43. Cartwright MJ, Anderson DR (1988) Correlation of asymmetric damage with asymmetric intraocular pressure in normal-tension glaucoma (low-tension glaucoma). Arch Ophthalmol 106:898–900

    PubMed  CAS  Google Scholar 

  44. Sigal IA, Flanagan JG, Ethier CR (2005) Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 46:4189–4199. doi:10.1167/iovs.05-0541

    Article  PubMed  Google Scholar 

  45. Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24:39–73. doi:10.1016/j.preteyeres.2004.06.001

    Article  PubMed  Google Scholar 

  46. Funata M, Tokoro T (1990) Scleral change in experimentally myopic monkeys. Graefes Arch Clin Exp Ophthalmol 228:174–179

    Article  PubMed  CAS  Google Scholar 

  47. Cahane M, Bartov E (1992) Axial length and scleral thickness effect on susceptibility to glaucomatous damage: a theoretical model implementing Laplace’s law. Ophthalmic Res 24:280–284

    Article  PubMed  CAS  Google Scholar 

  48. Xu L, Wang Y, Wang S, Wang Y, Jonas JB (2007) High myopia and glaucoma susceptibility the Beijing Eye Study. Ophthalmology 114:216–220. doi:10.1016/j.ophtha.2006.06.050

    Article  PubMed  Google Scholar 

  49. Copt RP, Thomas R, Mermoud A (1999) Corneal thickness in ocular hypertension, primary open-angle glaucoma, and normal tension glaucoma. Arch Ophthalmol 117:14–16

    PubMed  CAS  Google Scholar 

  50. Shah S, Chatterjee A, Mathai M, Kelly SP, Kwartz J, Henson D, McLeod D (1999) Relationship between corneal thickness and measured intraocular pressure in a general ophthalmology clinic. Ophthalmology 106:2154–2160. doi:10.1016/S0161-6420(99)90498-0

    Article  PubMed  CAS  Google Scholar 

  51. Burr JM, Mowatt G, Hernández R, Siddiqui MA, Cook J, Lourenco T, Ramsay C, Vale L, Fraser C, Azuara-Blanco A, Deeks J, Cairns J, Wormald R, McPherson S, Rabindranath K, Grant A (2007) The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: a systematic review and economic evaluation. Health Technol Assess 11:1–190

    Article  Google Scholar 

  52. Tuft SJ, Bunce C (2004) Axial length and age at cataract surgery. J Cataract Refract Surg 30:1045–1048. doi:10.1016/j.jcrs.2003.09.053

    Article  PubMed  Google Scholar 

  53. Kubo E, Kumamoto Y, Tsuzuki S, Akagi Y (2006) Axial length, myopia, and the severity of lens opacity at the time of cataract surgery. Arch Ophthalmol 124:1586–1590. doi:10.1001/archopht.124.11.1586

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidehiro Oku.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oku, Y., Oku, H., Park, M. et al. Long axial length as risk factor for normal tension glaucoma. Graefes Arch Clin Exp Ophthalmol 247, 781–787 (2009). https://doi.org/10.1007/s00417-009-1045-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-009-1045-2

Keywords

Navigation