Skip to main content

A finite element infant eye model to investigate retinal forces in shaken baby syndrome

Abstract

Background

Shaken baby syndrome (SBS) is a form of abuse in which an infant, typically 6 months or less, is held and submitted to repeated acceleration-deceleration forces. One of the indicators of abuse is bilateral retinal hemorrhaging. A computational model of an infant eye, using the finite element method, is built in order to assess forces at the posterior retina for a shaking and an impact motions.

Method

The eye model is based on histological studies, diagrams, and materials from previous literature. Motions are applied to the model to simulate a four-cycle shaking motion in 1 second with maximum extension/flexion of the neck. The retinal forces of the shaking motion, at the posterior eye, are compared to an impact pulse (60G) simulating a fall for a total duration of 100 ms.

Results

The shaking motion, for the first cycle, shows retinal force means at the posterior eye to be around 0.08 N sustained from the time range of 50 to 200 ms, into the shake, with a peak in excess of 0.2 N. The impulse, area under the curve, is 15 N-ms for 250 msec for the first cycle. The impact simulation reveals a mean retinal force around 0.025 N for a time range of 0 to 26 ms, with a peak force around 0.11 N. Moreover, the impulse for the impact simulation is 13 times lower than the shaking motion.

Conclusion

The results suggest that shaking alone may be enough to cause retinal hemorrhaging, as there are more sustained and higher forces in the posterior retina, compared to an impact due to a fall. This is in part due to the optic nerve causing more localized stresses in a shaking motion than an impact.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Zauberman H, DeGuillebon H (1972) Retinal traction in vivo and postmortem. Arch Ophthalmol 87:549–554

    PubMed  CAS  Google Scholar 

  2. Caffey J (1974) The whiplash shaken infant syndrome: manual shaking by the extremities with whiplash-induced intracranial and intraocular bleedings, linked with residual permanent brain damage and mental retardation. Pediatrics 54:396–403

    PubMed  CAS  Google Scholar 

  3. Duhaime AC, Christian C, Armonda R, Hunter J, Hertle R (1996) Disappearing subdural hematomas in children. Pediatr Neurosurg 25:116–122. doi:10.1159/000121108

    Article  PubMed  CAS  Google Scholar 

  4. Margulies SS, Thibault LE (1992) A proposed tolerance criterion for diffuse axonal injury in man. J Biomech 25:917–923. doi:10.1016/0021-9290(92)90231-O

    Article  PubMed  CAS  Google Scholar 

  5. Jafari SS, Maxwell WL, Neilson M, Graham DI (1997) Axonal cytoskeletal changes after non-disruptive axonal injury. J Neurocytol 26:207–221. doi:10.1023/A:1018588114648

    Article  PubMed  CAS  Google Scholar 

  6. Bain AC, Meaney DF (2000) Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. J Biomech Eng 122:615–622. doi:10.1115/1.1324667

    Article  PubMed  CAS  Google Scholar 

  7. Prange MT, Margulies SS (2001) Tissue strain thresholds for axonal injury in the infant brain. In: Kamm RD (ed) Proceedings of the 2001 Bioengineering Conference, Snowbird, UT, USA. American Society of Mechanical Engineers New York, pp 833–834

    Google Scholar 

  8. Lambert SR, Johnson TE, Hoyt CS (1986) Optic nerve sheath and retinal hemorrhages associated with the shaken baby syndrome. Arch Ophthalmol 104:1509–1512

    PubMed  CAS  Google Scholar 

  9. Gilliland MG, Luckenbach MW, Chenier TC (1994) Systemic and ocular findings in 169 prospectively studied child deaths: retinal hemorrhages usually mean child abuse. Forensic Sci Int 68:117–132. doi:10.1016/0379-0738(94)90309-3

    Article  PubMed  CAS  Google Scholar 

  10. Betz P, Puschel K, Miltner E, Lignitz E, Eisenmenger W (1996) Morphometrical analysis of retinal hemorrhages in the shaken baby syndrome. Forensic Sci Int 78:71–80. doi:0379-0738(95)01866-2 [pii]

    Article  PubMed  CAS  Google Scholar 

  11. Kapoor S, Schiffman J, Tang R, Kiang E, Li H, Woodward J (1997) The significance of white-centered retinal hemorrhages in the shaken baby syndrome. Pediatr Emerg Care 13:183–185. doi:10.1097/00006565-199706000-00002

    Article  PubMed  CAS  Google Scholar 

  12. Gilliland MG, Folberg R (1996) Shaken babies–some have no impact injuries. J Forensic Sci 41:114–116

    PubMed  CAS  Google Scholar 

  13. Levin AV (2000) Retinal haemorrhages and child abuse. In: David TJ (ed) Recent advances in paediatrics. Churchill Livingstone, London, pp 151–219

    Google Scholar 

  14. Prange MT, Coats B, Duhaime AC, Margulies SS (2003) Anthropomorphic simulations of falls, hakes, and inflicted impacts in infants. J Neurosurg 99:143–150

    PubMed  Google Scholar 

  15. Morison CN (2002) The dynamics of shaken baby syndrome (Ph.D thesis). University of Birmingham, Birmingham, p 12

    Google Scholar 

  16. Sebag J (1998) Macromolecular structure of the corpus vitreus. Prog Polym Sci 23:415–446. doi:10.1016/S0079-6700(97)00035-X

    Article  CAS  Google Scholar 

  17. Nickerson CS, Karageozian HL, Park J, Kornfield JA (2005) Internal Tension: A Novel Hypothesis Concerning the Mechanical Properties of the Vitreous Humor. In: Horkay F, Amis EJ (eds) Biological and synthetic polymer networks and gels: 17th Polymer Networks Group Meeting Bethedsa, MD, USA August 15–19 2004. Wiley, New York, pp 183–190

    Google Scholar 

  18. Hogan MJ, Alvarado JA, Weddell JE (1971) Histology of the human eye; an atlas and textbook. Saunders, Philadelphia

    Google Scholar 

  19. Zimmerman RL (1980) In vivo measurements of the viscoelasticity of the human vitreous humor. Biophys J 29:539–544

    Article  PubMed  CAS  Google Scholar 

  20. Duhaime AC, Gennarelli TA, Thibault LE, Bruce DA, Margulies SS, Wiser R (1987) The shaken baby syndrome. A clinical, pathological, and biomechanical study. J Neurosurg 66:409–415

    Article  PubMed  CAS  Google Scholar 

  21. Newman WD, Hollman AS, Dutton GN, Carachi R (2002) Measurement of optic nerve sheath diameter by ultrasound: a means of detecting acute raised intracranial pressure in hydrocephalus. Br J Ophthalmol 86:1109–1113. doi:10.1136/bjo.86.10.1109

    Article  PubMed  CAS  Google Scholar 

  22. Woo SL, Kobayashi AS, Lawrence C, Schlegel WA (1972) Mathematical model of the corneo-scleral shell as applied to intraocular pressure-volume relations and applanation tonometry. Ann Biomed Eng 1:87–98. doi:10.1007/BF02363420

    Article  PubMed  CAS  Google Scholar 

  23. Power ED (2001) A nonlinear finite element model of the human eye to investigate ocular injuries from night vision gogglesmechanical engineering. Virginia Polytechnic Institute, Blacksburg, Virginia

    Google Scholar 

  24. MADYMO (2004) MADYMO Model Manual Version 6.2. TNO MADYMO BV, Netherlands

    Google Scholar 

  25. National Library of Medicine (2007) The Visible Human Project

  26. Power ED, Duma SM, Stitzel JD, Herring IP, West RL, Bass CR, Crowley JS, Brozoski FT (2002) Computer modeling of airbag-induced ocular injury in pilots wearing night vision goggles. Aviat Space Environ Med 73:1000–1006

    PubMed  Google Scholar 

  27. Stitzel JD, Duma SM, Cormier JM, Herring IP (2002) A nonlinear finite element model of the eye with experimental validation for the prediction of globe rupture. Stapp Car Crash J 46:81–102. doi:2002-22-0005 [pii]

    PubMed  Google Scholar 

  28. Uchio E, Ohno S, Kudoh J, Aoki K, Kisielewicz LT (1999) Simulation model of an eyeball based on finite element analysis on a supercomputer. Br J Ophthalmol 83:1106–1111

    Article  PubMed  CAS  Google Scholar 

  29. Samani A, Bishop J, Yaffe MJ, Plewes DB (2001) Biomechanical 3-D finite element modeling of the human breast using MRI data. IEEE Trans Med Imaging 20:271–279. doi:10.1109/42.921476

    Article  PubMed  CAS  Google Scholar 

  30. Brands DWA (2002) Predicting brain mechanics during closed head impact: Numerical and constitutive aspects. Technische Universiteit Eindhoven (The Netherlands), Netherlands

    Google Scholar 

  31. Gopalakrishnan S (2002) Behaviour of isoparametric quadrilateral family of Lagrangian fluid finite elements. Int J Numer Methods Eng 54:731–761. doi:10.1002/nme.444

    Article  Google Scholar 

  32. Manzini G, Putti M (2007) Mesh locking effects in the finite volume solution of 2-D anisotropic diffusion equations. J Comput Phys 220:751–771. doi:10.1016/j.jcp.2006.05.026

    Article  Google Scholar 

  33. Wolter JR (1961) Notes, cases, instruments: adhesions of the lens capsule to the anterior hyaloid membrane. Am J Ophthalmol 55:511–512

    Google Scholar 

  34. Lee B, Litt M, Buchsbaum G (1992) Rheology of the vitreous body. Part I: Viscoelasticity of human vitreous. Biorheology 29:521–533

    PubMed  CAS  Google Scholar 

  35. Duck FA (1990) Physical properties of tissue a comprehensive reference book. Academic Press, London

    Google Scholar 

  36. Graebel WP, van Alphen GW (1977) The elasticity of sclera and choroid of the human eye, and its implications on scleral rigidity and accommodation. J Biomech Engn 99:203–208

    Google Scholar 

  37. Jones IL, Warner M, Stevens JD (1992) Mathematical modelling of the elastic properties of retina: a determination of Young’s modulus. Eye 6(Pt 6):556–559

    PubMed  Google Scholar 

  38. Wu W, Peters WH 3rd, Hammer ME (1987) Basic mechanical properties of retina in simple elongation. J Biomech Eng 109:65–67

    PubMed  CAS  Google Scholar 

  39. Weber H, Landwehr G (1982) A new method for the determination of the mechanical properties of the vitreous. Ophthalmic Res 14:326–334

    PubMed  CAS  Google Scholar 

  40. Verver MM (2004) Numerical tools for comfort analyses of automotive seating. Technische Universiteit Eindhoven (The Netherlands), Netherlands

    Google Scholar 

  41. Hill AV (1950) The series elastic component of muscle. Proc R Soc Lond B Biol Sci 137:273–280. doi:10.1098/rspb.1950.0035

    PubMed  CAS  Google Scholar 

  42. Winters JM, Stark L (1985) Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models. IEEE Trans Biomed Eng 32:826–839. doi:10.1109/TBME.1985.325498

    Article  PubMed  CAS  Google Scholar 

  43. Winters JM, Stark L (1988) Estimated mechanical properties of synergistic muscles involved in movements of a variety of human joints. J Biomech 21:1027–1041. doi:10.1016/0021-9290(88)90249-7

    Article  PubMed  CAS  Google Scholar 

  44. Winters JM (1985) Generalized Analysis and Design of Antagonistic Muscle Models: Effect of Nonlinear Properties on the Control of Human Movement (Biomechanics, Neurocontrol, Biocontrol). University of California, San Francisco with the University of California Berkeley, California USA

    Google Scholar 

  45. Hatze H (1977) A complete set of control equations for the human musculo-skeletal system. J Biomech 10:799–805. doi:10.1016/0021-9290(77)90094-X

    Article  PubMed  CAS  Google Scholar 

  46. Lehman S, Stark L (1979) Simulation of linear and nonlinear eye movement models: sensitivity analyses and enumeration studies of time optimal control. J Cybern Inf Sci 2:21–43

    Google Scholar 

  47. Robinson DA (1981) Models of the mechanics of eye movments. In: Zuber BL (ed) Models of oculomotor behavior and control. CRC Press, Boca Raton, pp 21–41

    Google Scholar 

  48. Lehman SL, Stark LW (1983) Perturbation analysis applied to eye, head, and arm movement models. IEEE Trans Syst Man Cybern SMC 13:972–979

    Google Scholar 

  49. Kita M, Marmor MF (1992) Retinal adhesive force in living rabbit, cat, and monkey eyes. Normative data and enhancement by mannitol and acetazolamide. Invest Ophthalmol Vis Sci 33:1879–1882

    PubMed  CAS  Google Scholar 

  50. Kita M, Marmor MF (1992) Effects on retinal adhesive force in vivo of metabolically active agents in the subretinal space. Invest Ophthalmol Vis Sci 33:1883–1887

    PubMed  CAS  Google Scholar 

  51. Collins CC, Scott AB, O’Meara DM (1969) Elements of the peripheral oculomotor apparatus. Am J Optom Arch Am Acad Optom 46:510–515

    PubMed  CAS  Google Scholar 

  52. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2004) Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci 45:4378–4387. doi:45/12/4378 [pii]10.1167/iovs.04-0133

    Article  PubMed  Google Scholar 

  53. Hans SA (2007) Shaken baby syndrome: Retinal hemorrhaging. A biomechanical approach to understanding the mechanism of causation. Old Dominion University, Virginia

    Google Scholar 

  54. DeGuillebon H, Zauberman H (1972) Experimental retinal detachment. Biophysical aspects of retinal peeling and stretching. Arch Ophthalmol 87:545–548

    PubMed  CAS  Google Scholar 

  55. Weber H, Landwehr G, Kilp H, Neubauer H (1982) The mechanical properties of the vitreous of pig and human donor eyes. Ophthalmic Res 14:335–343

    Article  PubMed  CAS  Google Scholar 

  56. Bettelheim FA, Wang TJ (1976) Dynamic viscoelastic properties of bovine viterous. Exp Eye Res 23:435–441. doi:10.1016/0014-4835(76)90172-X

    Article  PubMed  CAS  Google Scholar 

  57. Tokita M, Fujiya Y, Hikichi K (1984) Dynamic viscoelasticity of bovine vitreous body. Biorheology 21:751–756

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The University Dissertation Fellowship awarded from the Vice Provost for Graduate Studies and Research, Dr. Philip J. Langlais, supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Alex Hans.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hans, S.A., Bawab, S.Y. & Woodhouse, M.L. A finite element infant eye model to investigate retinal forces in shaken baby syndrome. Graefes Arch Clin Exp Ophthalmol 247, 561–571 (2009). https://doi.org/10.1007/s00417-008-0994-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-008-0994-1

Keywords