Skip to main content

Advertisement

Log in

The effect of clonidine on VEGF expression in human retinal pigment epithelial cells (ARPE-19)

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The purpose of this study was to investigate the effect of clonidine, an alpha2-adrenergic receptor (α2-ADR) agonist, on vascular endothelial growth factor (VEGF) expression and secretion in the human retinal pigment epithelial cell line (ARPE-19) stimulated with interleukin-1β (IL-1β).

Methods

Alpha2-ADRs (α2A, α2B, and α2C) mRNA expression in ARPE-19 cells was examined by semiquantitative reverse transcription polymerase chain reaction (RT-PCR). Clonidine and inhibitors against protein kinases that are involved in the regulation of the intracellular signal transduction were added to serum-free medium before stimulation of IL-1β. The α2-ADR antagonist, Yohimbine, was loaded 30 min before the addition of clonidine. The expression of VEGF mRNA and protein was measured by real-time PCR and enzyme-linked immunosorbent assay.

Results

Alpha2A-ADR, α2B-ADR, and α2C-ADR mRNA was expressed in RPE cells. Clonidine, an inhibitor of p38MAPK and MEK1/2, inhibited the expression of VEGF protein and mRNA in the RPE cells stimulated with IL-1β. The inhibitory effect of clonidine on the secretion of VEGF protein stimulated with IL-1β was blocked by α2-ADR antagonists.

Conclusions

The effect of clonidine on the expression of VEGF may be via suppression of the p38MAPK and MEK1/2 signal transduction pathways activated with IL-1β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Henkind P, Gartner S (1983) The relationship between retinal pigment epithelium and the choriocapillaris. Trans Ophthalmol Soc U K 103:444–447

    PubMed  Google Scholar 

  2. Yang QR, Smets RME, Neetens A, Berghe DV (1993) Human retinal pigment epithelial cells from different donors continuously produce a vascular endothelial cell-stimulating factor into serum-free medium. J Cell Sci 104:211–218

    PubMed  CAS  Google Scholar 

  3. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881. doi:10.1152/physrev.00021.2004

    Article  PubMed  CAS  Google Scholar 

  4. Marano RJ, Rakoczy PE (2005) Treatments for choroidal and retinal neovascularization: a focus on oligonucleotide therapy and delivery for the regulation of gene function. Clin Experiment Ophthalmol 33:81–89. doi:10.1111/j.1442-9071.2005.00952.x

    Article  PubMed  Google Scholar 

  5. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309. doi:10.1126/science.2479986

    Article  PubMed  CAS  Google Scholar 

  6. Ferrara N (1999) Vascular endothelial growth factor: molecular and biological aspects. Curr Top Microbiol Immunol 237:1–30

    PubMed  CAS  Google Scholar 

  7. Aiello LP (1997) Vascular endothelial growth factor. 20th-century mechanisms, 21st-century therapies. Invest Ophthalmol Vis Sci 38:1647–1652

    PubMed  CAS  Google Scholar 

  8. Schlingemann RO, van Hinsbergh VWM (1997) Role of vascular permeability factor/vascular endothelial growth factor in eye disease. Br J Ophthalmol 81:501–512

    Article  PubMed  CAS  Google Scholar 

  9. Mousa SA, Lorelli W, Campochiaro PA (1999) Role of hypoxia and extracellular matrix-integrin binding in the modulation of angiogenic growth factors secretion by retinal pigmented epithelial cells. J Cell Biochem 74:135–143. doi:10.1002/(SICI)1097-4644(19990701)74:1<135::AID-JCB15>3.0.CO;2-#

    Article  PubMed  CAS  Google Scholar 

  10. Lu M, Kuroki M, Amano S, Tolentino M, Keough K, Kim I, Bucala R, Adamis AP (1998) Advanced glycation end products increase retinal vascular endothelial growth factor expression. J Clin Invest 101:1219–1224. doi:10.1172/JCI1277

    Article  PubMed  CAS  Google Scholar 

  11. Oh H, Takagi H, Takagi C, Suzuma K, Otani A, Ishida K, Matsumura M, Ogura Y, Honda Y (1999) The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. Invest Ophthalmol Vis Sci 40:1891–1898

    PubMed  CAS  Google Scholar 

  12. Dinarello CA (1994) The interleukin-1 family: 10 years of discovery. FASEB J 8:1314–1325

    PubMed  CAS  Google Scholar 

  13. Awad BE, Kreft B, Wolber E-M et al (2000) Hypoxia and IL-1β stimulate vascular endothelial growth factor production in human proximal tubular cells. Kidney Int 58:43–50. doi:10.1046/j.1523-1755.2000.00139.x

    Article  PubMed  Google Scholar 

  14. Ben-Av P, Crofford LJ, Wilder RL et al (1995) Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and LL-1: a potential mechanism for inflammatory angiogenesis. FEBS Lett 372:83–87. doi:10.1016/0014-5793(95)00956-A

    Article  PubMed  CAS  Google Scholar 

  15. Jung YD, Liu W, Reinmuth N et al (2001) Vascular endothelial growth factor is upregulated by IL-1β in human vascular smooth muscle cells via the p38 mitogen-activated protein kinase pathway. Angiogenesis 4:155–162. doi:10.1023/A:1012291524723

    Article  PubMed  CAS  Google Scholar 

  16. Kern TS (2007) Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res 2007:95103. doi:10.1155/2007/95103

    PubMed  Google Scholar 

  17. Kowluru RA, Odenbach S (2004) Role of IL-1β in the development of retinopathy in rats: effect of antioxidants. Invest Ophthalmol Vis Sci 45:4161–4166. doi:10.1167/iovs.04-0633

    Article  PubMed  Google Scholar 

  18. Tatar O, Adam A, Shinoda K, Yoeruek E, Szurman P, Bopp S, Eckardt C, Bartz-Schmidt KU, Grisanti S (2007) Influence of verteporfin photodynamic therapy on inflammation in human choroidal neovascular membranes secondary to age-related macular degeneration. Retina 27:713–723. doi:10.1097/IAE.0b013e318042d3b0

    Article  PubMed  Google Scholar 

  19. Patel M, Chan CC (2008) Immunopathological aspects of age-related macular degeneration. Semin Immunopathol 30:97–110. doi:10.1007/s00281-008-0112-9

    Article  PubMed  Google Scholar 

  20. Gavras I, Manolis AJ, Gavras H (2001) The α2-ADRs in hypertension and heart failure: experimental and clinical studies. J Hypertens 19:2115–2124. doi:10.1097/00004872-200112000-00001

    Article  PubMed  CAS  Google Scholar 

  21. Pollack IP, Brown RH, Crandall AS, Robin AL, Stewart RH, White GL (1988) Effectiveness of apraclonidine in preventing the rise in intraocular pressure after neodymium:YAG posterior capsulotomy. Trans Am Ophthalmol Soc 86:461–472

    PubMed  CAS  Google Scholar 

  22. Elena PP, Kosina-Boix M, Denis P, Moulin G, Lapalus P (1989) Alpha2-adrenergic receptors in rat and rabbit eye: a tritium-sensitive film autoradiography. Ophthalmic Res 21:309–314

    Article  PubMed  CAS  Google Scholar 

  23. Szelenyi J, Kiss JP, Puskas E, Szelenyi M, Vizi ES (2000) Contribution of differently localized α2- and β-ADRs in the modulation of TNF-α and IL-10 production in endotoxemic mice. Ann N Y Acad Sci 917:145–153

    Article  PubMed  CAS  Google Scholar 

  24. Liu B, Eisenach JC (2006) Perineural clonidine reduces p38 mitogen-activated protein kinase activation in sensory neurons. Neuroreport 17:1313–1317. doi:10.1097/01.wnr.0000227995.45917.f5

    Article  PubMed  CAS  Google Scholar 

  25. Tanaka T, Kanai H, Sekiguchi K, Aihara Y, Yokoyama T, Arai M (2000) Induction of VEGF gene transcription by IL-1β is mediated through stress-activated MAP kinases and Sp1 sites in cardiac myocytes. J Mol Cell Cardiol 32:1955–1967. doi:10.1006/jmcc.2000.1228

    Article  PubMed  CAS  Google Scholar 

  26. Philipp M, Brede ME, Hadamek K, Gessler M, Lohse MJ, Hein L (2002) Placental alpha(2)-adrenoceptors control vascular development at the interface between mother and embryo. Nat Genet 31:311–315. doi:10.1038/ng919

    Article  PubMed  CAS  Google Scholar 

  27. Jackson JR, Minton JA, Ho ML, Wei N, Winkler JD (1997) Expression of vascular endothelial growth factor in synovial fibroblasts is induced by hypoxia and IL-1β. J Rheumatol 24:1253–1259

    PubMed  CAS  Google Scholar 

  28. Jung YJ, Isaacs JS, Sunmin L, Trepel J, Neckers L (2003) IL-1β-mediated up-regulation of HIF-1α via an NFκB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J 17:2115–2117

    PubMed  CAS  Google Scholar 

  29. Roberge FG, Caspi RR, Nussenblatt RB (1988) Glial retinal Mueller cells produce II-1 activity and have a dual effect on autoimmune T helper lymphocytes. J Immunol 140:2193–2196

    PubMed  CAS  Google Scholar 

  30. Helbig H, Kittredge KL, Gurley RC, Thurau SR, Palestine AG, Nussenblatt RB (1990) Endotoxin-induced production of inflammatory mediators by cultured ciliary epithelial cells. Curr Eye Res 9:501–505. doi:10.3109/02713689008999616

    Article  PubMed  CAS  Google Scholar 

  31. Vinores SA, Xiao WH, Zimmerman R, Whitcup SM, Wawrousek EF (2003) Upregulation of vascular endothelial growth factor (VEGF) in the retinas of transgenic mice overexpressing IL-1β in the lens and mice undergoing retinal degeneration. Histol Histopathol 18:797–810

    PubMed  CAS  Google Scholar 

  32. Demircan N, Safran BG, Soylu M, Ozcan AA, Sizmaz S (2006) Determination of vitreous IL-1 and TNF-α levels in proliferative diabetic retinopathy. Eye 20:1366–1369. doi:10.1038/sj.eye.6702138

    Article  PubMed  CAS  Google Scholar 

  33. Yoshino Y, Aoyagi M, Tamaki M, Duan L, Morimoto T, Ohno K (2006) Activation of p38 MAPK and/or JNK contributes to increased levels of VEGF secretion in human malignant glioma cells. Int J Oncol 29:981–987

    PubMed  CAS  Google Scholar 

  34. Kable JW, Murrin LC, Bylund DB (2000) In vivo gene modification elucidates subtype-specific functions o f α2-ADRs. J Pharmacol Exp Ther 293:1–7

    PubMed  CAS  Google Scholar 

  35. Platts KE, Benson MT, Rennie IG, Sharrard RM, Rees RC (1995) Cytokine modulation of adhesion molecule expression on human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 36:2262–2269

    PubMed  CAS  Google Scholar 

  36. Campochiaro PA, Sugg R, Grotendorst G, Hjelmeland LM (1989) Retinal pigment epithelial cells produce PDGF-like proteins and secrete them into their media. Eye Exp Res 49:217–227. doi:10.1016/0014-4835(89)90092-4

    Article  CAS  Google Scholar 

  37. Elner VM, Strieter RM, Elner SG (1990) Neutrophil chemotactic factor (IL-8) gene expression by cytokine-treated retinal pigment epithelial cells. Am J Pathol 136:745–750

    PubMed  CAS  Google Scholar 

  38. Holtkamp GM, De Vos AF, Peek R, Kijlsta A (1999) Analysis of the secretion pattern of monocyte chemotactic protein-1 (MCP-1) and transforming growth factor-beta 2 (TGF-β2) by human retinal pigment epithelial cells. Clin Exp Immunol 118:35–40. doi:10.1046/j.1365-2249.1999.01016.x

    Article  PubMed  CAS  Google Scholar 

  39. Kanga BY, Leeb SW, Kim TS (2003) Stimulation of interleukin-12 production in mouse macrophages via activation of p38 mitogen-activated protein kinase by α2-ADRs agonists. Eur J Pharmacol 467:223–231. doi:10.1016/S0014-2999(03)01628-5

    Article  CAS  Google Scholar 

  40. Romero-Sandoval A, Eisenach JC (2006) Perineural clonidine reduces mechanical hypersensitivity and cytokine production in established nerve injury. Anesthesiology 104:351–355. doi:10.1097/00000542-200602000-00022

    Article  PubMed  CAS  Google Scholar 

  41. Xu B, Makris A, Thornton C, Ogle R, Horvath J, Hennessy A (2006) Antihypertensive drugs clonidine, diazoxide, hydralazine and furosemide regulate the production of cytokines by placentas and peripheral blood mononuclear cells in normal pregnancy. Pregnancy 24:915–922

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research (No.: 19791259) from the Ministry of Education, Science, Sports, and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Hayashi.

Additional information

The authors have no financial relationship with any organization.

The authors have full control of all primary data, and agree to allow Graefe’s Archive for Clinic and Experimental Ophthalmology to review the data upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, K., Zhang, XY., Kitagawa, K. et al. The effect of clonidine on VEGF expression in human retinal pigment epithelial cells (ARPE-19). Graefes Arch Clin Exp Ophthalmol 247, 207–213 (2009). https://doi.org/10.1007/s00417-008-0990-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-008-0990-5

Keywords

Navigation