Skip to main content

Advertisement

Log in

Intravitreal administration of the anti-TNF monoclonal antibody Infliximab in the rabbit

  • Medical Ophthalmology
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Tumor necrosis factor (TNF) is known to play an important role in various immune-mediated ocular diseases; intravenous administration of the anti-TNF monoclonal antibody infliximab has proved beneficial in such cases. Since intravitreal injection (when available) is a substitute for systemic administration of various drugs targeting the eye, we aimed to evaluate the safety of intravitreal injection of infliximab in the rabbit eye.

Methods

Seven groups of New Zealand white rabbits (four animals in each group) received a single unilateral intravitreal injection (0.1 ml) of increasing doses of infliximab (namely 1, 2, 5, 8, 10 or 20 mg infliximab [Remicade]) or a sham injection respectively. Slit-lamp biomicroscopy, fundoscopy and electrophysiology recordings, i.e. scotopic, photopic and flicker responses, were performed at baseline and after 1, 5, 10, 15, 30 and 45 days. Infliximab-injected eyes were compared with sham-injected and with uninjected fellow eyes (n = 28). Animals were euthanized on day 45 for histopathological examination of the retinas.

Results

Clinical examination and electrophysiological testing were consistently unremarkable after either sham or 1 mg or 2 mg infliximab injections. In contrast, electrophysiological recordings were significantly reduced in a dose-dependent manner from day 1 through day 45, after 5, 8, 10 and 20 mg infliximab injections. Flicker responses were the most sensitive in detecting the lower toxic dose of 5 mg. Histopathological findings were similar in uninjected and sham-injected eyes, as well as after 1 mg or 2 mg infliximab injections. Consistent with the functional abnormalities, retinal deformities and diffuse edema were observed after injection of 5 mg or higher doses of infliximab.

Conclusions

Intravitreal infliximab may be safely administered up to a dose of 2 mg in the rabbit eye. Such doses can be used in the design of future clinical trials assessing the effects of infliximab for selected patients with immune-mediated ocular conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Theodossiadis PG, Markomichelakis NN, Sfikakis PP (2007) Tumor necrosis factor antagonists: preliminary evidence for an emerging approach in the treatment of ocular inflammation. Retina 27:399–413, doi:10.1097/MAJ.0b013e3180318fbc

    Article  PubMed  Google Scholar 

  2. Majka S, McGuire PG, Das A (2002) Regulation of matrix metalloproteinase expression by tumor necrosis factor in a murine model of retinal neovascularization. Invest Ophthalmol Vis Sci 43:260–266

    PubMed  Google Scholar 

  3. Spranger J, Meyer-Schwickerath R, Klein M, Schatz H, Pfeiffer A (1995) TNF-alpha level in the vitreous body. Increase in neovascular eye diseases and proliferative diabetic retinopathy. Med Klin (Munich) 90:134–137

    CAS  Google Scholar 

  4. Ueda T, Ueda T, Fukuda S, Browne R, Jenis E, Spengler R, Chou R, Buch P, Aljada A, Dandona P, Sasisekharan R, Dorey CK, Armstrong D (1998) Lipid hydroperoxide-induced tumor necrosis factor (TNF)-alpha, vascular endothelial growth factor and neovascularization in the rabbit cornea: effect of TNF inhibition. Angiogenesis 1:174–184, doi:10.1023/A:1018377621102

    Article  PubMed  Google Scholar 

  5. Armstrong D, Augustin AJ, Spengler R, Al-Jada A, Nickola T, Grus F, Koch F (1998) Detection of vascular endothelial growth factor and tumor necrosis factor alpha in epiretinal membranes of proliferative diabetic retinopathy, proliferative vitreoretinopathy and macular pucker. Ophthalmologica 212:410–414, doi:10.1159/000027378

    Article  PubMed  CAS  Google Scholar 

  6. Oh H, Takagi H, Takagi C, Suzuma K, Otani A, Ishida K, Matsumura M, Ogura Y, Honda Y (1999) The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. Invest Ophthalmol Vis Sci 40:1891–1898

    PubMed  CAS  Google Scholar 

  7. Yang P, McKay BS, Allen JB, Jaffe GJ (2004) Effect of NF-kappa B inhibition on TNF-alpha-induced apoptosis in human RPE cells. Invest Ophthalmol Vis Sci 45:2438–2446, doi:10.1167/iovs.03–0805

    Article  PubMed  Google Scholar 

  8. Yang P, Wiser JL, Peairs JJ, Ebright JN, Zavodni ZJ, Bowes Rickman C, Jaffe GJ (2005) Human RPE expression of cell survival factors. Invest Ophthalmol Vis Sci 46:1755–1764, doi:10.1167/iovs.04–1039

    Article  PubMed  Google Scholar 

  9. Santos Lacomba M, Marcos Martin C, Gallardo Galera JM, Gomez Vidal MA, Collantes Estevez E, Ramirez Chamond R, Omar M (2001) Aqueous humor and serum tumor necrosis factor-alpha in clinical uveitis. Ophthalmic Res 33:251–255, doi:10.1159/000055677

    Article  PubMed  CAS  Google Scholar 

  10. Murray PI, Sivaraj RR (2005) Anti-TNF-alpha therapy for uveitis: Behcet and beyond. Eye 19:831–833 doi:10.1038/sj.eye.6701792

    Article  PubMed  CAS  Google Scholar 

  11. Nussenblatt R (2005) Treating intraocular inflammatory disease in the 21st century. Arch Ophthalmol 123:1000–1001, doi:10.1001/archopht.123.7.1000

    Article  PubMed  Google Scholar 

  12. El-Shabrawi Y, Hermann J (2002) Anti-tumor necrosis factor-alpha therapy with infliximab as an alternative to corticosteroids in the treatment of human leukocyte antigen B27-associated acute anterior uveitis. Ophthalmology 109:2342–2346, doi:10.1016/S0161–6420(02)01292–7

    Article  PubMed  Google Scholar 

  13. Fries W, Giofre MR, Catanoso M, Lo Gullo R (2002) Treatment of acute uveitis associated with Crohn’s disease and sacroileitis with infliximab. Am J Gastroenterol 97:499–500, doi:10.1111/j.1572–0241.2002.05514.x

    Article  PubMed  Google Scholar 

  14. Kahn P, Weiss M, Imundo LF, Levy DM (2006) Favorable response to high-dose infliximab for refractory childhood uveitis. Ophthalmology 113:860–864, e862

    Article  PubMed  Google Scholar 

  15. Sfikakis PP, Theodossiadis PG, Katsiari CG, Kaklamanis P, Markomichelakis NN (2001) Effect of infliximab on sight-threatening panuveitis in Behcet’s disease. Lancet 358:295–296, doi:10.1016/S0140–6736(01)05497–6

    Article  PubMed  CAS  Google Scholar 

  16. Ohno S, Nakamura S, Hori S, Shimakawa M, Kawashima H, Mochizuki M, Sugita S, Ueno S, Yoshizaki K, Inaba G (2004) Efficacy, safety, and pharmacokinetics of multiple administration of infliximab in Behcet’s disease with refractory uveoretinitis. J Rheumatol 31:1362–1368

    PubMed  CAS  Google Scholar 

  17. Sfikakis PP, Kaklamanis PH, Elezoglou A, Katsilambros N, Theodossiadis PG, Papaefthimiou S, Markomichelakis N (2004) Infliximab for recurrent, sight-threatening ocular inflammation in Adamantiades-Behcet disease. Ann Intern Med 140:404–406

    PubMed  CAS  Google Scholar 

  18. Tugal-Tutkun I, Mudun A, Urgancioglu M, Kamali S, Kasapoglu E, Inanc M, Gul A (2005) Efficacy of infliximab in the treatment of uveitis that is resistant to treatment with the combination of azathioprine, cyclosporine, and corticosteroids in Behcet’s disease: an open-label trial. Arthritis Rheum 52:2478–2484, doi:10.1002/art.21231

    Article  PubMed  CAS  Google Scholar 

  19. Baughman RP, Bradley DA, Lower EE (2005) Infliximab in chronic ocular inflammation. Int J Clin Pharmacol Ther 43:7–11

    PubMed  CAS  Google Scholar 

  20. Roberts SD, Wilkes DS, Burgett RA, Knox KS (2003) Refractory sarcoidosis responding to infliximab. Chest 124:2028–2031, doi:10.1378/chest.124.5.2028

    Article  PubMed  Google Scholar 

  21. Katz JM, Bruno MK, Winterkorn JM, Nealon N (2003) The pathogenesis and treatment of optic disc swelling in neurosarcoidosis: a unique therapeutic response to infliximab. Arch Neurol 60:426–430, doi:10.1001/archneur.60.3.426

    Article  PubMed  Google Scholar 

  22. Markomichelakis NN, Theodossiadis PG, Pantelia E, Papaefthimiou S, Theodossiadis GP, Sfikakis PP (2004) Infliximab for chronic cystoid macular edema associated with uveitis. Am J Ophthalmol 138:648–650, doi:10.1016/j.ajo.2004.04.066

    Article  PubMed  CAS  Google Scholar 

  23. Sfikakis PP, Markomichelakis N, Theodossiadis GP, Grigoropoulos V, Katsilambros N, Theodossiadis PG (2005) Regression of sight-threatening macular edema in type 2 diabetes following treatment with the anti-tumor necrosis factor monoclonal antibody infliximab. Diabetes Care 28:445–447, doi:10.2337/diacare.28.2.445

    Article  PubMed  Google Scholar 

  24. Olson JL, Courtney RJ, Mandava N (2007) Intravitreal infliximab and choroidal neovascularization in an animal model. Arch Ophthalmol 125:1221–1224, doi:10.1001/archopht.125.9.1221

    Article  PubMed  CAS  Google Scholar 

  25. Shi X, Semkova I, Muther PS, Dell S, Kociok N, Joussen AM (2006) Inhibition of TNF-alpha reduces laser-induced choroidal neovascularization. Exp Eye Res 83:1325–1334, doi:10.1016/j.exer.2006.07.007

    Article  PubMed  CAS  Google Scholar 

  26. Markomichelakis NN, Theodossiadis PG, Sfikakis PP (2005) Regression of neovascular age-related macular degeneration following infliximab therapy. Am J Ophthalmol 139:537–540, doi:10.1016/j.ajo.2004.09.058

    Article  PubMed  Google Scholar 

  27. Sfikakis PP, Iliopoulos A, Elezoglou A, Kittas C, Stratigos A (2005) Psoriasis induced by anti-tumor necrosis factor therapy: a paradoxical adverse reaction. Arthritis Rheum 52:2513–2518, doi:10.1002/art.21233

    Article  PubMed  CAS  Google Scholar 

  28. Suhler EB, Smith JR, Wertheim MS, Lauer AK, Kurz DE, Pickard TD, Rosenbaum JT (2005) A prospective trial of infliximab therapy for refractory uveitis: preliminary safety and efficacy outcomes. Arch Ophthalmol 123:903–912, doi:10.1001/archopht.123.7.903

    Article  PubMed  CAS  Google Scholar 

  29. Wegscheider BJ, El-Shabrawi L, Weger M, Ardjomand N, Hermann J, Aberer E, El-Shabrawi Y (2007) Adverse skin reactions to infliximab in the treatment of intraocular inflammation. Eye 21:547–549

    PubMed  CAS  Google Scholar 

  30. Keystone EC (2005) Safety of biologic therapies—an update. J Rheumatol Suppl 74:8–12

    PubMed  Google Scholar 

  31. Jager RD, Aiello LP, Patel SC, Cunningham ET Jr (2004) Risks of intravitreous injection: a comprehensive review. Retina 24:676–698, doi:10.1097/00006982–200410000–00002

    Article  PubMed  Google Scholar 

  32. van Norren D, Padmos P (1975) Cone dark adaptation: the influence of halothane anesthesia. Invest Ophthalmol 14:212–227

    PubMed  Google Scholar 

  33. Marmor MF, Holder GE, Seeliger MW, Yamamoto S (2004) Standard for clinical electroretinography (2004 update). Doc Ophthalmol 108:107–114, doi:10.1023/B:DOOP.0000036793.44912.45

    Article  PubMed  Google Scholar 

  34. Kivilcim M, Peyman GA, Kazi AA, Dellacroce J, Ghobrial RN, Monzano R (2007) Intravitreal toxicity of high-dose etanercept. J Ocul Pharmacol Ther 23:57–62, doi:10.1089/jop.2006.0083

    Article  PubMed  CAS  Google Scholar 

  35. Manzano RP, Peyman GA, Carvounis PE, Kivilcim M, Khan P, Chevez-Barrios P, Takahashi W (2008) Ocular toxicity of intravitreous adalimumab (Humira) in the rabbit. Graefes Arch Clin Exp Ophthalmol 246:907–911, doi:10.1007/s00417–008–0765-z

    Article  PubMed  CAS  Google Scholar 

  36. Fauser S, Kalbacher H, Alteheld N, Koizumi K, Krohne TU, Joussen AM (2004) Pharmacokinetics and safety of intravitreally delivered etanercept. Graefes Arch Clin Exp Ophthalmol 242:582–586, doi:10.1007/s00417–004–0895-x

    Article  PubMed  CAS  Google Scholar 

  37. Porciatti V, Moretti G, Ciavarella P, Falsini B (1993) The second harmonic of the electroretinogram to sinusoidal flicker: spatiotemporal properties and clinical application. Doc Ophthalmol 84:39–46, doi:10.1007/BF01203281

    Article  PubMed  CAS  Google Scholar 

  38. Shahar J, Avery RL, Heilweil G, Barak A, Zemel E, Lewis GP, Johnson PT, Fisher SK, Perlman I, Loewenstein A (2006) Electrophysiologic and retinal penetration studies following intravitreal injection of bevacizumab (Avastin). Retina 26:262–269, doi:10.1097/00006982–200603000–00002

    Article  PubMed  Google Scholar 

  39. Giansanti F, Ramazzotti M, Vannozzi L, Rapizzi E, Fiore T, Iaccheri B, Degl’ Innocenti D, Moncini D, Menchini U (2008) A pilot study on ocular safety of intravitreal infliximab in a rabbit model. Invest Ophthalmol Vis Sci 49:1151–1156, doi:10.1167/iovs.07–0932

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis G. Theodossiadis.

Additional information

The authors have no financial disclosure regarding this manuscript. All the authors have full control of all primary data, and agree to allow Graefe’s Archive for Clinical and Experimental Ophthalmology to review all data if requested. Every procedure involving animals was conducted in accordance with the Declaration of Helsinki and the ARVO guidelines, and Council Directive 86/609/EEC of 24–11–1986 of the European Union, as well as Greek laws and regulations (Presidential Decree 160/1991, Act No 2015/2001) regarding the protection of animals used for experimental and other scientific purposes. The experimental protocol was approved by the Ethics Committee of “Attikon” University Hospital.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theodossiadis, P.G., Liarakos, V.S., Sfikakis, P.P. et al. Intravitreal administration of the anti-TNF monoclonal antibody Infliximab in the rabbit. Graefes Arch Clin Exp Ophthalmol 247, 273–281 (2009). https://doi.org/10.1007/s00417-008-0967-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-008-0967-4

Keywords

Navigation