Skip to main content
Log in

Splenic CD8+ T cells secrete TGF-β1 to exert suppression in mice with anterior chamber-associated immune deviation

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

CD8+ regulatory T cells (Treg) have been considered to be involved in a model of ocular-induced tolerance, known as anterior chamber-associated immune deviation (ACAID). The mechanisms of suppression by CD8+ T cells in ACAID remain only poorly understood. TGF-β1 is considered as an inhibitory cytokine for immunosuppression in some models. The production of TGF-β1 by CD8+ T cells in ACAID, and whether CD8+ T cells exert suppression through TGF-β1, is unknown.

Methods

The suppressive effect of CD8+ T cells in ACAID mice was determined by a local adoptive transfer (LAT) assay. The production of TGF-β1 by CD8+ T cells was measured by enzyme-linked immunosorbent assay (ELISA). Anti-TGF-β1 antibodies were used in the LAT assay to test if they could block the inhibitory effect of CD8+ T cells.

Results

CD8+ T cells from ACAID mice were shown to block the delayed-type hypersensitivity (DTH) response in an antigen-specific manner in a LAT assay. These CD8+ T cells secreted TGF-β1, and their suppression could partially be blocked by anti-TGF-β1 antibodies.

Conclusions

Our study confirms that CD8+ T cells from ACAID mice possess inhibitory properties. This population exerts part of its suppressive function via the production of TGF-β1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wilbanks GA, Streilein JW (1990) Characterization of suppressor cells in anterior chamber-associated immune deviation (ACAID) induced by soluble antigen. Evidence of two functionally and phenotypically distinct T-suppressor cell populations. Immunology 71:383–389

    PubMed  CAS  Google Scholar 

  2. Letterio JJ, Roberts AB (1998) Regulation of immune responses by TGF-beta. Annu Rev Immunol 16:137–161, doi:10.1146/annurev.immunol.16.1.137

    Article  PubMed  CAS  Google Scholar 

  3. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146, doi:10.1146/annurev.immunol.24.021605.090737

    Article  PubMed  CAS  Google Scholar 

  4. Zhang X, Izikson L, Liu L, Weiner HL (2001) Activation of CD25(+)CD4(+) regulatory T cells by oral antigen administration. J Immunol 167:4245–4253

    PubMed  CAS  Google Scholar 

  5. Marie JC, Letterio JJ, Gavin M, Rudensky AY (2005) TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+ CD25+ regulatory T cells. J Exp Med 201:1061–1067, doi:10.1084/jem.20042276

    Article  PubMed  CAS  Google Scholar 

  6. Skelsey ME, Mellon J, Niederkorn JY (2001) Gamma delta T cells are needed for ocular immune privilege and corneal graft survival. J Immunol 166:4327–4333

    PubMed  CAS  Google Scholar 

  7. Kosiewicz MM, Okamoto S, Miki S, Ksander BR, Shimizu T, Streilein JW (1994) Imposing deviant immunity on the presensitized state. J Immunol 153:2962–2973

    PubMed  CAS  Google Scholar 

  8. Kezuka T, Streilein JW (2000) In vitro generation of regulatory CD8+ T cells similar to those found in mice with anterior chamber-associated immune deviation. Invest Ophthalmol Vis Sci 41:1803–1811

    PubMed  CAS  Google Scholar 

  9. Jiang L, Yang P, He H, Li B, Lin X, Hou S et al (2007) Increased expression of Foxp3 in splenic CD8+ T cells from mice with anterior chamber-associated immune deviation. Mol Vis 13:968–974

    PubMed  CAS  Google Scholar 

  10. Skelsey ME, Mayhew E, Niederkorn JY (2003) Splenic B cells act as antigen presenting cells for the induction of anterior chamber-associated immune deviation. Invest Ophthalmol Vis Sci 44:5242–5251, doi:10.1167/iovs.03-0768

    Article  PubMed  Google Scholar 

  11. D’Orazio TJ, Niederkorn JY (1998) A novel role for TGF-beta and IL-10 in the induction of immune privilege. J Immunol 160:2089–2098

    PubMed  CAS  Google Scholar 

  12. Stein-Streilein J, Streilein JW (2002) Anterior chamber associated immune deviation (ACAID): regulation, biological relevance, and implications for therapy. Int Rev Immunol 21:123–152, doi:10.1080/08830180212066

    Article  PubMed  Google Scholar 

  13. Sakaguchi S (2000) Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101:455–458, doi:10.1016/S0092-8674(00)80856-9

    Article  PubMed  CAS  Google Scholar 

  14. Menoret A, Myers LM, Lee SJ, Mittler RS, Rossi RJ, Vella AT (2006) TGFbeta protein processing and activity through TCR triggering of primary CD8+ T regulatory cells. J Immunol 177:6091–6097

    PubMed  CAS  Google Scholar 

  15. Myers L, Croft M, Kwon BS, Mittler RS, Vella AT (2005) Peptide-specific CD8 T regulatory cells use IFN-gamma to elaborate TGF-beta-based suppression. J Immunol 174:7625–7632

    PubMed  CAS  Google Scholar 

  16. Cosmi L, Liotta F, Lazzeri E, Francalanci M, Angeli R, Mazzinghi B et al (2003) Human CD8+ CD25+ thymocytes share phenotypic and functional features with CD4+ CD25+ regulatory thymocytes. Blood 102:4107–4114, doi:10.1182/blood-2003–04–1320

    Article  PubMed  CAS  Google Scholar 

  17. Endharti AT, Rifa IMs, Shi Z, Fukuoka Y, Nakahara Y, Kawamoto Y, Takeda K, Isobe K, Suzuki H (2005) Cutting edge: CD8+ CD122+ regulatory T cells produce IL-10 to suppress IFN-gamma production and proliferation of CD8+ T cells. J Immunol 175:7093–7097

    PubMed  CAS  Google Scholar 

  18. Gilliet M, Liu YJ (2002) Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med 195:695–704, doi:10.1084/jem.20011603

    Article  PubMed  CAS  Google Scholar 

  19. Kang HK, Michaels MA, Berner BR, Datta SK (2005) Very low-dose tolerance with nucleosomal peptides controls lupus and induces potent regulatory T cell subsets. J Immunol 174:3247–3255

    PubMed  CAS  Google Scholar 

  20. Maile R, Pop SM, Tisch R, Collins EJ, Cairns BA, Frelinger JA (2006) Low-avidity CD8lo T cells induced by incomplete antigen stimulation in vivo regulate naive higher avidity CD8hi T cell responses to the same antigen. Eur J Immunol 36:397–410, doi:10.1002/eji.200535064

    Article  PubMed  CAS  Google Scholar 

  21. Tang XL, Smith TR, Kumar V (2005) Specific control of immunity by regulatory CD8 T cells. Cell Mol Immunol 2:11–19

    PubMed  CAS  Google Scholar 

  22. Wang Y, Ghali WE, Pingle P, Traboulsi A, Dalal T, O’Rourke J et al (2003) Splenic T cells from mice receiving intracameral antigen suppress in-vitro antigen-induced proliferation and interferon-gamma production by sensitized lymph node cells. Ocul Immunol Inflamm 11:39–52, doi:10.1076/ocii.11.1.39.15578

    Article  PubMed  Google Scholar 

  23. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N et al (2003) Conversion of peripheral CD4+ CD25- naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886, doi:10.1084/jem.20030152

    Article  PubMed  CAS  Google Scholar 

  24. Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF (2004) Cutting edge: TGF-beta induces a regulatory phenotype in CD4+ CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 172:5149–5153

    PubMed  CAS  Google Scholar 

  25. Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA (2004) Natural and induced CD4+ CD25+ cells educate CD4+ CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol 172:5213–5221

    PubMed  CAS  Google Scholar 

  26. Kezuka T, Streilein JW (2000a) Analysis of in vivo regulatory properties of T cells activated in vitro by TGFbeta2-treated antigen presenting cells. Invest Ophthalmol Vis Sci 41:1410–1421

    PubMed  CAS  Google Scholar 

  27. Weiner HL, Friedman A, Miller A, Khoury SJ, al-Sabbagh A, Santos L et al (1994) Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu Rev Immunol 12:809–837, doi:10.1146/annurev.iy.12.040194.004113

    Article  PubMed  CAS  Google Scholar 

  28. Hahn BH, Singh RP, La Cava A, Ebling FM (2005) Tolerogenic treatment of lupus mice with consensus peptide induces Foxp3-expressing, apoptosis-resistant, TGFbeta-secreting CD8+ T cell suppressors. J Immunol 175:7728–7737

    PubMed  CAS  Google Scholar 

  29. Nakamura T, Sonoda KH, Faunce DE, Gumperz J, Yamamura T, Miyake S et al (2003) CD4+ NKT cells, but not conventional CD4+ T cells, are required to generate efferent CD8+ T regulatory cells following antigen inoculation in an immune-privileged site. J Immunol 171:1266–1271

    PubMed  CAS  Google Scholar 

  30. Ashour HM, Niederkorn JY (2006) Gammadelta T cells promote anterior chamber-associated immune deviation and immune privilege through their production of IL-10. J Immunol 177:8331–8337

    PubMed  CAS  Google Scholar 

  31. Kosiewicz MM, Alard P, Streilein JW (1998) Alterations in cytokine production following intraocular injection of soluble protein antigen: impairment in IFN-gamma and induction of TGF-beta and IL-4 production. J Immunol 161:5382–5390

    PubMed  CAS  Google Scholar 

  32. Kapp JA, Honjo K, Kapp LM, Xu X, Cozier A, Bucy RP (2006) TCR transgenic CD8+ T cells activated in the presence of TGFbeta express FoxP3 and mediate linked suppression of primary immune responses and cardiac allograft rejection. Int Immunol 18:1549–1562, doi:10.1093/intimm/dxl088

    Article  PubMed  CAS  Google Scholar 

  33. Cone RE, Li X, Sharafieh R, O’Rourke J, Vella AT (2007) The suppression of delayed-type hypersensitivity by CD8+ regulatory T cells requires interferon-gamma. Immunology 120:112–119, doi:10.1111/j.1365-2567.2006.02486.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study is supported by Project of International Cooperation in Science and Technology, Guangdong Province (2004B50301002, 2006A50107001); Key Project of National Natural Science Foundation (30630064); National Supporting Project of P.R. China (2007BAI18B10).

Declaration

All the listed authors have participated actively in the study, and have read and approved the submitted manuscript. None of the authors has any potential financial conflict of interest related to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peizeng Yang.

Additional information

Liqiong Jiang and Hao He contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, L., He, H., Yang, P. et al. Splenic CD8+ T cells secrete TGF-β1 to exert suppression in mice with anterior chamber-associated immune deviation. Graefes Arch Clin Exp Ophthalmol 247, 87–92 (2009). https://doi.org/10.1007/s00417-008-0947-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-008-0947-8

Keywords

Navigation