Skip to main content

Advertisement

Log in

Upregulation of stromal cell–derived factor 1 (SDF-1) expression in microvasculature endothelial cells in retinal ischemia-reperfusion injury

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Stromal cell–derived factor 1 (SDF-1) is a potent chemotactic and angiogenic factor that has been proposed to play a role in the development of neovascularization. In this study, we explored the expression of SDF-1 in a rat model of retinal ischemia-reperfusion injury and investigated the possible role of retinal microvasculature endothelium cells in generation of this chemokine.

Methods

Expression patterns of SDF-1 were studied in retina suffering ischemia-reperfusion insult in Sprague-Dawley rats by elevating the intraocular pressure to 110 mm for 60 minutes. The relative level of SDF-1 mRNA in retinas following 6, 12 and 24 hours reperfusion was determined by semi-quantitative RT-PCR. Immunohistochemical methods were used to detect specific lesions expressing SDF-1. The gene expression of SDF-1 in cultured human retinal microvasculature endothelial cells (HRMEC) under hypoxia conditions was assessed by semi-quantitative RT-PCR. The SDF-1 protein was analyzed by immunocytochemistry and fluorescence-activated cell sorting.

Results

Upregulation of SDF-1 mRNA (at 6, 12, and 24 hours of reperfusion) was observed, with the expression peak occurring at 12 hours. SDF-1 positive cells appeared initially around the retinal vessels,which diffused into the inner retinal layers. Hypoxia enhanced the expression of HIF-1 and SDF-1 mRNA in HRMEC. The production of SDF-1 protein by HRMEC was increased up to 320% after 6 hours of hypoxia, as demonstrated by fluorescence-activated cell sorting.

Conclusions

The results of our study indicate that endogenous SDF-1 is up-regulated in retinal microvasculature suffering ischemia insult, and that microvasculature endothelial cells are potential contributors for generation of SDF-1 in ischemic retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Forrester JV, Shafiee A, Schroder S, Knott R, McIntosh L (1993) The role of growth factors in proliferative diabetic retinopathy. Eye 7(Pt 2):276–287

    PubMed  Google Scholar 

  2. Wiedemann P (1992) Growth factors in retinal diseases: proliferative vitreoretinopathy, proliferative diabetic retinopathy, and retinal degeneration. Surv Ophthalmol 36:373–384, doi:10.1016/0039-6257(92)90115-A

    Article  PubMed  CAS  Google Scholar 

  3. Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO (2003) Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res 22:1–29, doi:10.1016/S1350-9462(02)00043-5

    Article  PubMed  CAS  Google Scholar 

  4. Butler JM, Guthrie SM, Koc M, Afzal A, Caballero S, Brooks HL et al (2005) SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest 115:86–93

    PubMed  CAS  Google Scholar 

  5. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348, doi:10.1016/j.cell.2005.02.034

    Article  PubMed  CAS  Google Scholar 

  6. Deshane J, Chen S, Caballero S, Grochot-Przeczek A, Was H, Li Calzi S et al (2007) Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. J Exp Med 204:605–618, doi:10.1084/jem.20061609

    Article  PubMed  CAS  Google Scholar 

  7. Salcedo R, Oppenheim JJ (2003) Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation 10:359–370, doi:10.1038/sj.mn.7800200

    Article  PubMed  CAS  Google Scholar 

  8. Kuhlmann CR, Schaefer CA, Reinhold L, Tillmanns H, Erdogan A (2005) Signalling mechanisms of SDF-induced endothelial cell proliferation and migration. Biochem Biophys Res Commun 335:1107–1114

    Article  PubMed  CAS  Google Scholar 

  9. Hill WD, Hess DC, Martin-Studdard A, Carothers JJ, Zheng J, Hale D et al (2004) SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol 63:84–96

    PubMed  CAS  Google Scholar 

  10. Miller JT, Bartley JH, Wimborne HJ, Walker AL, Hess DC, Hill WD et al (2005) The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12) expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic-ischemic injury. BMC Neurosci 6:63, doi:10.1186/1471-2202-6-63

    Article  PubMed  CAS  Google Scholar 

  11. Dilsiz N, Sahaboglu A, Yildiz MZ, Reichenbach A (2006) Protective effects of various antioxidants during ischemia-reperfusion in the rat retina. Graefes Arch Clin Exp Ophthalmol 244:627–633, doi:10.1007/s00417-005-0084-6

    Article  PubMed  CAS  Google Scholar 

  12. Schor AM, Schor SL (1986) The isolation and culture of endothelial cells and pericytes from the bovine retinal microvasculature: a comparative study with large vessel vascular cells. Microvasc Res 32:21–38, doi:10.1016/0026-2862(86)90041-5

    Article  PubMed  CAS  Google Scholar 

  13. Capetandes A, Gerritsen ME (1990) Simplified methods for consistent and selective culture of bovine retinal endothelial cells and pericytes. Invest Ophthalmol Vis Sci 31:1738–1744

    PubMed  CAS  Google Scholar 

  14. Yan Q, Vernon RB, Hendrickson AE, Sage EH (1996) Primary culture and characterization of microvascular endothelial cells from Macaca monkey retina. Invest Ophthalmol Vis Sci 37:2185–2194

    PubMed  CAS  Google Scholar 

  15. Lou Y, Oberpriller JC, Carlson EC (1997) Effect of hypoxia on the proliferation of retinal microvessel endothelial cells in culture. Anat Rec 248:366–373, doi:10.1002/(SICI)1097-0185(199707)248:3<366::AID-AR9>3.0.CO;2-N

    Article  PubMed  CAS  Google Scholar 

  16. Salvucci O, Yao L, Villalba S, Sajewicz A, Pittaluga S, Tosato G (2002) Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood 99:2703–2711, doi:10.1182/blood.V99.8.2703

    Article  PubMed  CAS  Google Scholar 

  17. Stellos K, Langer H, Daub K, Schoenberger T, Gauss A, Geisler T et al (2008) Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells. Circulation 117:206–215, doi:10.1161/CIRCULATIONAHA.107.714691

    Article  PubMed  CAS  Google Scholar 

  18. Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M et al (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362:697–703, doi:10.1016/S0140-6736(03)14232-8

    Article  PubMed  CAS  Google Scholar 

  19. Hitchon C, Wong K, Ma G, Reed J, Lyttle D, El-Gabalawy H (2002) Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum 46:2587–2597, doi:10.1002/art.10520

    Article  PubMed  CAS  Google Scholar 

  20. van Weel V, Seghers L, de Vries MR, Kuiper EJ, Schlingemann RO, Bajema IM et al (2007) Expression of vascular endothelial growth factor, stromal cell-derived factor-1, and CXCR4 in human limb muscle with acute and chronic ischemia. Arterioscler Thromb Vasc Biol 27:1426–1432, doi:10.1161/ATVBAHA.107.139642

    Article  PubMed  CAS  Google Scholar 

  21. Saxena A, Fish JE, White MD, Yu S, Smyth JW, Shaw RM et al (2008) Stromal cell-derived factor-1alpha is cardioprotective after myocardial infarction. Circulation 117:2224–2231, doi:10.1161/CIRCULATIONAHA.107.694992

    Article  PubMed  CAS  Google Scholar 

  22. Hu X, Dai S, Wu WJ, Tan W, Zhu X, Mu J et al (2007) Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation 116:654–663, doi:10.1161/CIRCULATIONAHA.106.672451

    Article  PubMed  CAS  Google Scholar 

  23. Tögel F, Isaac J, Hu Z, Weiss K, Westenfelder C (2005) Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int 67:1772–1784, doi:10.1111/j.1523-1755.2005.00275.x

    Article  PubMed  Google Scholar 

  24. Lima ESR, Shen J, Hackett SF, Kachi S, Akiyama H, Kiuchi K et al (2007) The SDF-1/CXCR4 ligand/receptor pair is an important contributor to several types of ocular neovascularization. FASEB J 21:3219–3230, doi:10.1096/fj.06-7359com

    Article  CAS  Google Scholar 

  25. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864, doi:10.1038/nm1075

    Article  PubMed  CAS  Google Scholar 

  26. Ceradini DJ, Gurtner GC (2005) Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc Med 15:57–63, doi:10.1016/j.tcm.2005.02.002

    Article  PubMed  CAS  Google Scholar 

  27. Karshovska E, Zernecke A, Sevilmis G, Millet A, Hristov M, Cohen CD et al (2007) Expression of HIF-1alpha in injured arteries controls SDF-1alpha mediated neointima formation in apolipoprotein E deficient mice. Arterioscler Thromb Vasc Biol 27:2540–2547, doi:10.1161/ATVBAHA.107.151050

    Article  PubMed  CAS  Google Scholar 

  28. Mirshahi F, Pourtau J, Li H, Muraine M, Trochon V, Legrand E et al (2000) SDF-1 activity on microvascular endothelial cells: consequences on angiogenesis in in vitro and in vivo models. Thromb Res 99:587–594, doi:10.1016/S0049-3848(00)00292-9

    Article  PubMed  CAS  Google Scholar 

  29. Yao L, Salvucci O, Cardones AR, Hwang ST, Aoki Y, De La Luz Sierra M et al (2003) Selective expression of stromal-derived factor-1 in the capillary vascular endothelium plays a role in Kaposi sarcoma pathogenesis. Blood 102:3900–3905, doi:10.1182/blood-2003-02-0641

    Article  PubMed  CAS  Google Scholar 

  30. Williams CK, Segarra M, Sierra Mde L, Sainson RC, Tosato G, Harris AL (2008) Regulation of CXCR4 by the Notch ligand delta-like 4 in endothelial cells. Cancer Res 68:1889–1895, doi:10.1158/0008-5472.CAN-07-2181

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the 5010 Project of Sun Yat-sen University in China (Grant No. 2006-45) and the Clinical Science Project of Ministry of Health in China (Grant No. 2007-353) and a scientific-technological program of Jiangxi Health department (200732020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibo Tang.

Additional information

We don’t have any financial relationship with the organization that sponsored the research. We have full control of all primary data, and agree to allow Graefe’s Archive for Clinical and Experimental Ophthalmology to review these data.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, P., Li, T., Yang, J. et al. Upregulation of stromal cell–derived factor 1 (SDF-1) expression in microvasculature endothelial cells in retinal ischemia-reperfusion injury. Graefes Arch Clin Exp Ophthalmol 246, 1707–1713 (2008). https://doi.org/10.1007/s00417-008-0907-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-008-0907-3

Keywords

Navigation