Skip to main content

Advertisement

Log in

Prooxidant–antioxidant balance, peroxide and catalase activity in the aqueous humour and serum of patients with exfoliation syndrome or exfoliative glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Oxidative stress plays an important role in the pathobiology of exfoliation syndrome (XFS) and exfoliative glaucoma (XFG).

Methods

We investigated the prooxidant-antioxidant balance (PAB) in aqueous humour and serum samples of 20 consecutive cases of XFS, 20 of XFG, and 20 age-matched controls, employing a recently described novel assay. The activity of catalase and the levels of (hydrogen) peroxide were also measured in these samples.

Results

There was no significant difference between the PAB in the aqueous humour of the XFS group (82.5 ± 10 AU) and age-matched control patients (78.9 ± 13.4 AU; p > 0.05). A significant shift of the PAB balance in favour of oxidants was detected in the XFG group (90.2 ± 7.6 AU) compared with controls (p  <  0.001). In the serum of patients with XFS (138.8 ± 13.2 AU) and XFG (124.08 ± 13.50 AU), PAB was significantly altered in favour of oxidants as compared to age-matched controls (114.9 ± 9.91 AU); p < 0.001). Catalase activity in the aqueous from XFS (10.1 ± 4.5 U/ml) and XFG (12.2 ± 6 U/ml) patients was significantly lower than that measured in the normal aqueous (14.6 ± 1.9 U/ml). Similarly, a significantly lower catalase activity was found in XFS (103 ± 21.4 U/ml) and XFG (116 ± 38 U/ml) serum samples compared with controls (189.6 ± 84.3 U/ml). Finally, (hydrogen) peroxide concentration in aqueous and serum samples from patients with XFS (aqueous: 26.9 ± 6.6 μM; serum: 41 ± 10 μM) and XFG (aqueous: 21.7 ± 7 μM; serum: 32 ± 4 μM) were significantly higher than that of the controls (aqueous: 9.6 ± 5.8 μM; serum: 24 ± 9 μM; p < 0.001).

Conclusions

These findings suggest that in XFS oxidative stress is counterbalanced in the aqueous, whereas the development of XFG is accompanied by a disruption of this balance in favour of oxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alamdari DH, Paletas K, Pegiou T, Sarigianni M, Befani C, Koliakos G (2007) A novel assay for the evaluation of the prooxidant–antioxidant balance, before and after antioxidant vitamin administration in type II diabetes patients. Clin Biochem 40(3–4):248–254 doi:10.1016/j.clinbiochem.2006.10.017

    Article  PubMed  CAS  Google Scholar 

  2. Alamdari DH, Ghayour-Mobarhan M, Tavallaie S, Parizadeh MR, Moohebati M, Ghafoori F, Kazemi-Bajestani SMR, Paletas K, Pegiou T, Koliakos G (2008) Prooxidant–antioxidant balance as a new risk factor in patients with angiographically defined coronary artery disease. Clin Biochem 41:375–380

    Article  PubMed  CAS  Google Scholar 

  3. Altintaş O, Maral H, Yüksel N, Karabaş VL, Dillioğlugil MO, Çağlar Y (2005) Homocysteine and nitric oxide levels in plasma of patients with pseudoexfoliation syndrome, pseudoexfoliation glaucoma, and primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 243:677–683 doi:10.1007/s00417–004–1097–2

    Article  PubMed  Google Scholar 

  4. Alvarado J, Murphy C, Polansky J, Juster R (1981) Age related changes in trabecular meshwork cellularity. Invest Ophthalmol Vis Sci 21:714–727

    PubMed  CAS  Google Scholar 

  5. Augusteyn RC (1981) Protein modification in cataract: possible oxidative mechanisms. In: Duncan G (ed.) Mechanisms of Cataract Formation in the Human Lens. Academic Press, New York, pp 71–116

    Google Scholar 

  6. Beatty S, Koh H, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134 doi:10.1016/S0039–6257(00)00140–5

    Article  PubMed  CAS  Google Scholar 

  7. Bhuyan KC, Bhuyan DK, Podos SM (1986) Lipid peroxidation in cataract of the human. Life Sci 38:1463–1471 doi:10.1016/0024–3205(86)90559-X

    Article  PubMed  CAS  Google Scholar 

  8. Cortopassi GA, Shibata D, Soong NW, Arnheim N (1992) A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci USA 89:7370–7374 doi:10.1073/pnas.89.16.7370

    Article  PubMed  CAS  Google Scholar 

  9. Ferreira SM, Fabian Lerner S, Brunzini R, Evelson PA, Llesuy SF (2004) Oxidative Stress Markers in Aqueous Humor of Glaucoma Patients. Am J Ophthalmol 137:62–69 doi:10.1016/S0002–9394(03)00788–8

    Article  PubMed  CAS  Google Scholar 

  10. Tatzber F, Griebenow S, Wonisch W, Winkler R (2003) Dual method for the determination of peroxidase activity and total peroxides—Iodide leads to a significant increase of peroxidase-activity in human sera. Anal Biochem 316:147–153 doi:10.1016/S0003–2697(02)00652–8

    Article  PubMed  CAS  Google Scholar 

  11. Freedman SF, Anderson PJ, Epstein DL (1985) Superoxide dismutase and catalase of calf trabecular meshwork. Invest Ophthalmol Vis Sci 26:1330–1335

    PubMed  CAS  Google Scholar 

  12. Gartaganis SP, Georgakopoulos CD, Patsoukis NE, Gotsis SS, Gartaganis VS, Georgiou CD (2005) Glutathione and lipid peroxide changes in pseudoexfoliation syndrome. Curr Eye Res 30(8):647–651 doi:10.1080/02713680590968367

    Article  PubMed  CAS  Google Scholar 

  13. Góth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196:143–152

    Article  PubMed  Google Scholar 

  14. Harman D (1988) Free radicals in aging. Mol Cell Biochem 84:155–161 doi:10.1007/BF00421050

    Article  PubMed  CAS  Google Scholar 

  15. Iriyama K, Yoshiura M, Iwamoto T, Kamada Y, Nozawa H, Mizuno A, Matsuzaki H (1986) Liquid chromatographic determination of uric acid and ascorbic acid in rat retinae after ophthalmic artery and optic nerve ligation. Curr Eye Res 5:479–483 doi:10.3109/02713688608996369

    Article  PubMed  CAS  Google Scholar 

  16. Julius M, Lang CA, Gleiberman L, Harburg E, DiFranceisco W, Schork A (1994) Glutathione and morbidity in a community-based sample of elderly. J Clin Epidemiol 47:1021–1026 doi:10.1016/0895–4356(94)90117–1

    Article  PubMed  CAS  Google Scholar 

  17. Koliakos GG, Konstas AG, Schlotzer-Schrehardt U, Bufidis T, Georgiadis N, Ringvold A (2002) Ascorbic acid concentration is reduced in the aqueous humor of patients with exfoliation syndrome. Am J Ophthalmol 134:879–883 doi:10.1016/S0002–9394(02)01797-X

    Article  PubMed  CAS  Google Scholar 

  18. Koliakos GG, Konstas AG, Schlotzer-Schrehardt U, Hollo G, Katsimbris IE, Georgiadis N et al (2003) 8-Isoprostaglandin F2a and ascorbic acid concentration in the aqueous humour of patients with exfoliation syndrome. Br J Ophthalmol 87:353–356 doi:10.1136/bjo.87.3.353

    Article  PubMed  CAS  Google Scholar 

  19. Koliakos GG, Konstas AGP, Hollo G (2008) Biochemistry and genetics of exfoliation syndrome. In: Hollo G, Konstas AGP (eds) From exfoliation syndrome to exfoliative glaucoma”EGS book. Dogma, 494 Italy 47–54

  20. LaBella FS, Vivian S, Thornhill DP (1966) Amino acid composition of human aortic elastin as influenced by age. J Gerontol 21:550–555

    PubMed  CAS  Google Scholar 

  21. Lam KW, Liu KM, Yee RW, Lee P (1982) Detection of uric acid in aqueous humor by high pressure liquid chromatography. Curr Eye Res 2:645–649 doi:10.3109/02713688209019992

    Article  PubMed  Google Scholar 

  22. Matsumura G, Herp A, Pigman W (1966) Depolymerization of hyalouronic acid by autoxidants and radiations. Radiat Res 28:735–752 doi:10.2307/3572179

    Article  PubMed  CAS  Google Scholar 

  23. Ohia SE, Opere CA, LeDay AM (2005) Pharmacological consequences of oxidative stress in ocular tissues. Mutat Res 579:22–36 doi:10.1016/j.mrfmmm.2005.03.025

    PubMed  CAS  Google Scholar 

  24. Paolisso G, Tagliamonte MR, Rizzo MR, Manzella D, Gambardella A, Varricchio M (1998) Oxidative stress and advancing age: results in healthy centenarians. J Am Geriatr Soc 46:833–838

    PubMed  CAS  Google Scholar 

  25. Ritch R (2001) Exfoliation syndrome. Curr Opin Ophthalmol 12:124–130 doi:10.1097/00055735–200104000–00008

    Article  PubMed  CAS  Google Scholar 

  26. Ritch R, Schlotzer-Schrehardt U (2001) Exfoliation syndrome. Surv Ophthalmol 45:265–315 doi:10.1016/S0039–6257(00)00196-X

    Article  PubMed  CAS  Google Scholar 

  27. Richer SP, Rose RC (1998) Water soluble antioxidants in mammalian aqueous humor: interaction with UV B and hydrogen peroxide. Vision Res 38:2881–2888 doi:10.1016/S0042–6989(98)00069–8

    Article  PubMed  CAS  Google Scholar 

  28. Robison WG Jr, Kuwabara T, Bieri JG (1980) Deficiencies of vitamins E and A in the rat: Retinal damage and lipofuscin accumulation. Invest Ophthalmol Vis Sci 19:1030–1037

    PubMed  CAS  Google Scholar 

  29. Rondanelli M, Melzi d'Eril GV, Anesi A (1997) Ferrari E. Altered oxidative stress in healthy old subjects. Aging Clin Exp Res 9:221–223

    CAS  Google Scholar 

  30. Schlotzer-Schrehardt U, Naumann GO (2006) Ocular and systemic pseudoexfoliation syndrome. Am J Ophthalmol 141:921–937 doi:10.1016/j.ajo.2006.01.047

    Article  PubMed  Google Scholar 

  31. Spector A, Garner WH (1981) Hydrogen peroxide and human cataract. Exp Eye Res 33:673 doi:10.1016/S0014–4835(81)80107–8

    Article  PubMed  CAS  Google Scholar 

  32. Spector A (1995) Oxidative stress-induced cataract: mechanisms of action. FASEB J 9:1173–1182

    PubMed  CAS  Google Scholar 

  33. Spector A, Ma W, Wang RR (1998) The aqueous humor is capable of generating and degrading H2O2. Invest Ophthalmol Vis Sci 39:1188–1197

    PubMed  CAS  Google Scholar 

  34. Tas S, Tam CF, Walford RL (1980) Disulfide bonds and the structure of the chromatin complex in relation to aging. Mech Ageing Dev 12:65–80 doi:10.1016/0047–6374(80)90030–5

    Article  PubMed  CAS  Google Scholar 

  35. Taylor HR (1979) Pseudoexfoliation, an environmental disease? Trans Ophthalmol Soc UK 99:302–307

    PubMed  CAS  Google Scholar 

  36. Thorleifsson G, Magnusson KP, Sulem P, Walters GB, Gudbjartsson DF, Stefansson H, Jonsson T, Jonasdottir A, Jonasdottir A, Stefansdottir G, Masson G, Hardarson GA, Petursson H, Arnarsson A, Motallebipour M, Wallerman O, Wadelius C, Gulcher JR, Thorsteinsdottir U, Kong A, Jonasson F, Stefansson K (2007) Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science 317(5843):1397–1400 doi:10.1126/science.1146554

    Article  PubMed  CAS  Google Scholar 

  37. Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57:145–155 doi:10.1016/S0753–3322(03)00043-X

    Article  PubMed  CAS  Google Scholar 

  38. Valko M, Leibfritz D, Moncola J, Cronin MTD, Mazura M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84 doi:10.1016/j.biocel.2006.07.001

    Article  PubMed  CAS  Google Scholar 

  39. Yimaz A, Adigüzel U, Tamer L, Yildirim O, Oz O, Vatansever H et al (2005) Serum oxidant/antioxidant balance in exfoliation syndrome. Clin Exp Ophthalmol 33:63–66 doi:10.1111/j.1442–9071.2005.00944.x

    Article  Google Scholar 

  40. Zenkel M, Kruse FE, Naumann GO, Schlötzer-Schrehardt U (2007) Impaired cytoprotective mechanisms in eyes with pseudoexfoliation syndrome/glaucoma. Invest Ophthalmol Vis Sci 48(12):5558–5566 doi:10.1167/iovs.07–0750

    Article  PubMed  Google Scholar 

  41. Zoric L, Miric D, Milenkovic S, Jovanovic P, Trajkovic G (2006) Pseudoexfoliation syndrome and its antioxidative protection deficiency as risk factors for age-related cataract. Eur J Ophthalmol 16(2):268–273

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by an EPEAEK “Pythagoras II” grant (Greek Ministry of National Education and Religion) to AGPK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George G. Koliakos.

Additional information

All human studies have been reviewed by the appropriate ethics committee, and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koliakos, G.G., Befani, C.D., Mikropoulos, D. et al. Prooxidant–antioxidant balance, peroxide and catalase activity in the aqueous humour and serum of patients with exfoliation syndrome or exfoliative glaucoma. Graefes Arch Clin Exp Ophthalmol 246, 1477–1483 (2008). https://doi.org/10.1007/s00417-008-0871-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-008-0871-y

Keywords

Navigation