Skip to main content

Advertisement

Log in

Inhibition of proliferation, migration and tube formation of choroidal microvascular endothelial cells by targeting HIF-1α with short hairpin RNA-expressing plasmid DNA in human RPE cells in a coculture system

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Retinal pigment epithelial (RPE) cells and choroidal microvascular endothelial cells (CECs) are the main cells involved in choroidal neovascularization (CNV), and hypoxia plays an important role in CNV formation via hypoxia inducible factor 1 (HIF-1). Our aim was to evaluate the role of HIF-1 in human RPE cells with regard to proliferation, migration and tube formation of CECs under hypoxia.

Methods

RPE cells were cultured under chemical hypoxia induced by 200 μM CoCl2, and RNA interference (RNAi) technique was used to knock down HIF-1α gene in RPE cells. mRNA and protein expression of HIF-1α and VEGF in RPE cells were investigated by real-time RT-PCR and Western blot. Three kinds of coculture models were used to observe the effects of RPE cells transfected by short hairpin RNA (shRNA)-expressing plasmid DNA (pDNA) (pshHIF-1α) on the proliferation, migration and tube formation of CECs respectively.

Results

Transfection of shRNA-expressing pDNA targeting HIF-1α to RPE cells resulted in the knock down of HIF-1α gene and reduction of the corresponding mRNA and protein of HIF-1α and VEGF under hypoxia. Consequently, the proliferation, migration and tube formation of CECs were significantly inhibited by the knocked-down RPE cells compared with the control in the coculture system. The proliferation rates of CECs decreased by 40.2%, 36.6% and 36.8% on days 3, 4 and 5 respectively. Migration reduced by 49.6% at 5 h, and tube formation decreased by 40.4% at 48 h.

Conclusion

RNAi of HIF-1α in RPE cells can inhibit angiogenesis in vitro and provide a possible strategy for treatment of choroidal neovascularization diseases by targeting HIF-1α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lambooij AC, van Wely KH, Lindenbergh-Kortleve DJ, Kuijpers RW, Kliffen M, Mooy CM (2003) Insulin-like growth factor-I and its receptor in neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 44:2192–2198, Medline. DOI 10.1167/iovs.02–0410

    Article  PubMed  Google Scholar 

  2. Schlingemann RO (2004) Role of growth factors and the wound healing response in age-related macular degeneration. Graefe Arch Clin Exp Ophthalmol 242:91–101, Medline. DOI 10.1007/s00417–003–0828–0

    Article  CAS  Google Scholar 

  3. Zhang P, Wang Y, Hui Y, Hu D, Wang H, Zhou J, Du H (2007) Inhibition of VEGF expression by targeting HIF-1 alpha with small interference RNA in human RPE cells. Ophthalmologica 221:411–417, Medline. DOI 10.1159/000107502

    Article  PubMed  CAS  Google Scholar 

  4. Penfold PL, Madigan MC, Gillies MC, Provis JM (2001) Immunological and aetiological aspects of macular degeneration. Prog Retin Eye Res 20:385–414, Medline. DOI 10.1016/S1350–9462(00)00025–2

    Article  PubMed  CAS  Google Scholar 

  5. Ferrara N, Damico L, Shams N, Lowman H, Kim R (2006) Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 26:859–870, Medline. DOI 10.1097/01.iae.0000242842.14624.e7

    Article  PubMed  Google Scholar 

  6. Kinose F, Roscilli G, Lamartina S, Anderson KD, Bonelli F, Spence SG, Ciliberto G, Vogt TF, Holder DJ, Toniatti C, Thut CJ (2005) Inhibition of retinal and choroidal neovascularization by a novel KDR kinase inhibitor. Mol Vis 11:366–373

    PubMed  CAS  Google Scholar 

  7. Aiello LP (2005) Angiogenic pathways in diabetic retinopathy. N Engl J Med 353:839–841, Medline. DOI 10.1056/NEJMe058142

    Article  PubMed  CAS  Google Scholar 

  8. Ruiz-Moreno JM, Montero JA, Zarbin MA (2007) Photodynamic therapy and high-dose intravitreal triamcinolone to treat exudative age-related macular degeneration: 2-year outcome. Retina 27:458–461, Medline. DOI 10.1097/IAE.0b013e318030c77c

    Article  PubMed  Google Scholar 

  9. Iriyama A, Obata R, Inoue Y, Takahashi H, Tamaki Y, Yanagi Y (2008) Effect of posterior juxtascleral triamcinolone acetonide on the efficacy and choriocapillaris hypoperfusion of photodynamic therapy. Graefe Arch Clin Exp Ophthalmol 246:339–344, Medline. DOI 10.1007/s00417–007–0667–5

    Article  CAS  Google Scholar 

  10. Bracken CP, Fedele AO, Linke S, Balrak W, Lisy K, Whitelaw ML, Peet DJ (2006) Cell-specific regulation of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha stabilization and transactivation in a graded oxygen environment. J Biol Chem 281:22575–22585, Medline. DOI 10.1074/jbc.M600288200

    Article  PubMed  CAS  Google Scholar 

  11. Check E (2005) A crucial test. Nat Med 11:243–244, Medline. DOI 10.1038/nm0305–243

    Article  PubMed  CAS  Google Scholar 

  12. Murata M, Takanami T, Shimizu S, Kubota Y, Horiuchi S, Habano W, Ma JX, Sato S (2006) Inhibition of ocular angiogenesis by diced small interfering RNAs (siRNAs) specific to vascular endothelial growth factor (VEGF). Curr Eye Res 31:171–180, Medline. DOI 10.1080/02713680500514636

    Article  PubMed  CAS  Google Scholar 

  13. Wang YS, Hui YN, Wiedemann P (2002) Role of apoptosis in the cytotoxic effect mediated by daunorubicin in cultured human retinal pigment epithelial cells. J Ocul Pharmacol Ther 18:377–387, Medline. DOI 10.1089/10807680260218542

    Article  PubMed  CAS  Google Scholar 

  14. Wang YS, Eichler W, Friedrichs U, Yafai Y, Hoffmann S, Yasukawa T, Hui YN, Wiedemann P (2005) Impact of endostatin on bFGF-induced proliferation, migration, and matrix metalloproteinase-2 expression/secretion of bovine choroidal endothelial cells. Curr Eye Res 30:479–489, Medline. DOI 10.1080/02713680590959358

    Article  PubMed  CAS  Google Scholar 

  15. Geisen P, McColm JR, Hartnett ME (2006) Choroidal endothelial cells transmigrate across the retinal pigment epithelium but do not proliferate in response to soluble vascular endothelial growth factor. Exp Eye Res 82:608–619, Medline. DOI 10.1016/j.exer.2005.08.021

    Article  PubMed  CAS  Google Scholar 

  16. Peterson LJ, Wittchen ES, Geisen P, Burridge K, Hartnett ME (2007) Heterotypic RPE-choroidal endothelial cell contact increases choroidal endothelial cell transmigration via PI 3-kinase and Rac1. Exp Eye Res 84:737–744, Medline. DOI 10.1016/j.exer.2006.12.012

    Article  PubMed  CAS  Google Scholar 

  17. Slomiany MG, Rosenzweig SA (2004) Autocrine effects of IGF-I-induced VEGF and IGFBP-3 secretion in retinal pigment epithelial cell line ARPE-19. Am J Physiol Cell Physiol 287:C746–753, Medline. DOI 10.1152/ajpcell.00568.2003

    Article  PubMed  CAS  Google Scholar 

  18. Slomiany MG, Rosenzweig SA (2006) Hypoxia-inducible factor-1-dependent and -independent regulation of insulin-like growth factor-1-stimulated vascular endothelial growth factor secretion. J Pharmacol Exp Ther 318:666–675, Medline. DOI 10.1124/jpet.106.104158

    Article  PubMed  CAS  Google Scholar 

  19. Forooghian F, Razavi R, Timms L (2007) Hypoxia-inducible factor expression in human RPE cells. Br J Ophthalmol 91:1406–1410, Medline. DOI 10.1136/bjo.2007.123125

    Article  PubMed  Google Scholar 

  20. Mojsilovic-Petrovic J, Callaghan D, Cui H, Dean C, Stanimirovic DB, Zhang W (2007) Hypoxia-inducible factor-1 (HIF-1) is involved in the regulation of hypoxia-stimulated expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and MCP-5 (Ccl12) in astrocytes. J Neuroinflammation 4:12, Medline. DOI 10.1186/1742–2094–4–12

    Article  PubMed  Google Scholar 

  21. Newcomb EW, Lukyanov Y, Schnee T, Ali MA, Lan L, Zagzag D (2006) Noscapine inhibits hypoxia-mediated HIF-1alpha expression andangiogenesis in vitro: a novel function for an old drug. Int J Oncol 28:1121–1130

    PubMed  CAS  Google Scholar 

  22. Fan W, Zheng JJ, McLaughlin BJ (2002) An in vitro model of the back of the eye for studying retinal pigment epithelial-choroidal endothelial interactions. In Vitro Cell Dev Biol Anim 38:228–234, Medline. DOI 10.1290/1071–2690(2002)038

    Article  PubMed  CAS  Google Scholar 

  23. Mizuno T, Nagao M, Yamada Y, Narikiyo M, Ueno M, Miyagishi M, Taira K, Nakajima Y (2006) Small interfering RNA expression vector targeting hypoxia-inducible factor 1 alpha inhibits tumor growth in hepatobiliary and pancreatic cancers. Cancer Gene Ther 13:131–140, Medline. DOI 10.1038/sj.cgt.7700871

    Article  PubMed  CAS  Google Scholar 

  24. Jensen RL, Ragel BT, Whang K, Gillespie D (2006) Inhibition of hypoxia inducible factor-1alpha (HIF-1alpha) decreases vascular endothelial growth factor (VEGF) secretion and tumor growth in malignant gliomas. J Neurooncol 78:233–247, Medline. DOI 10.1007/s11060–005–9103-z

    Article  PubMed  CAS  Google Scholar 

  25. Reich SJ, Fosnot J, Kuroki A, Tang W, Yang X, Maguire AM, Bennett J, Tolentino MJ (2003) Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis 9:210–216

    PubMed  CAS  Google Scholar 

  26. Tolentino MJ, Brucker AJ, Fosnot J, Ying GS, Wu IH, Malik G, Wan S, Reich SJ (2004) Intravitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in a nonhuman primate, laser-induced model of choroidal neovascularization. Retina 24:132–138, Medline. DOI 10.1097/00006982–200402000–00018

    Article  PubMed  Google Scholar 

  27. Campochiaro PA (2006) Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders. Gene Ther 13:559–562, Medline. DOI 10.1038/sj.gt.3302653

    Article  PubMed  CAS  Google Scholar 

  28. Forooghian F, Das B (2007) Anti-angiogenic effects of ribonucleic acid interference targeting vascular endothelial growth factor and hypoxia-inducible factor-1alpha. Am J Ophthalmol 144:761–768, Medline. DOI 10.1016/j.ajo.2007.07.022

    Article  PubMed  CAS  Google Scholar 

  29. Schwesinger C, Yee C, Rohan RM, Joussen AM, Fernandez A, Meyer TN, Poulaki V, Ma JJ, Redmond TM, Liu S, Adamis AP, D’Amato RJ (2001) Intrachoroidal neovascularization in transgenic mice overexpressing vascular endothelial growth factor in the retinal pigment epithelium. Am J Pathol 158:1161–1172

    PubMed  CAS  Google Scholar 

  30. Holekamp NM, Bouck N, Volpert O (2002) Pigment epithelium-derived factor is deficient in the vitreous of patients with choroidal neovascularization due to age-related macular degeneration. Am J Ophthalmol 134:220–227, Medline. DOI 10.1016/S0002–9394(02)01549–0

    Article  PubMed  CAS  Google Scholar 

  31. Bhutto IA, McLeod DS, Hasegawa T, Kim SY, Merges C, Tong P, Lutty GA (2006) Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged human choroid and eyes with age-related macular degeneration. Exp Eye Res 82:99–110, Medline. DOI 10.1016/j.exer.2005.05.007

    Article  PubMed  CAS  Google Scholar 

  32. Zhang SX, Ma JX (2007) Ocular neovascularization: Implication of endogenous angiogenic inhibitors and potential therapy. Prog Retin Eye Res 26:1–37, Medline. DOI 10.1016/j.preteyeres.2006.09.002

    Article  PubMed  Google Scholar 

  33. Notari L, Miller A, Martinez A, Amaral J, Ju M, Robinson G, Smith LE, Becerra SP (2005) Pigment epithelium-derived factor is a substrate for matrix metalloproteinase type 2 and type 9: implications for downregulation in hypoxia. Invest Ophthalmol Vis Sci 46:2736–2747, Medline. DOI 10.1167/iovs.04–1489

    Article  PubMed  Google Scholar 

  34. Spaide RF (2006) Rationale for combination therapies for choroidal neovascularization. Am J Ophthalmol 141:149–156, Medline. DOI 10.1016/j.ajo.2005.07.025

    Article  PubMed  Google Scholar 

  35. Saishin Y, Silva RL, Saishin Y, Kachi S, Aslam S, Gong YY, Lai H, Carrion M, Harris B, Hamilton M, Wei L, Campochiaro PA (2005) Periocular gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization in a human-sized eye. Hum Gene Ther 16:473–478, Medline. DOI 10.1089/hum.2005.16.473

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China (No.30371516, 30672291). The project was sponsored partly by the equipment donation from the Alexander Von Humboldt Foundation in Germany (to YS Wang, V8151/02085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Sheng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, W., Wang, YS., Hui, YN. et al. Inhibition of proliferation, migration and tube formation of choroidal microvascular endothelial cells by targeting HIF-1α with short hairpin RNA-expressing plasmid DNA in human RPE cells in a coculture system. Graefes Arch Clin Exp Ophthalmol 246, 1413–1422 (2008). https://doi.org/10.1007/s00417-008-0858-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-008-0858-8

Keywords

Navigation