Skip to main content

Advertisement

Log in

Anti-inflammatory effect of angiotensin type 1 receptor antagonist on endotoxin-induced uveitis in rats

  • Inflammatory Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Angiotensin II type 1 (AT1) receptor-antagonists are widely used for treatment of hypertension. Recent studies have demonstrated a protective effect of renin angiotensin system (RAS) antagonism against immune-mediated inflammatory diseases such as myocarditis, chronic allograft rejection, antiglomerular basement membrane nephritis, colitis, and arthritis. However, only a few reports have demonstrated the effect of RAS in ocular inflammatory conditions. The purpose of this study was to investigate the anti-inflammatory effect of a selective AT1 receptor antagonist, losartan, on endotoxin-induced uveitis (EIU) and compare the effect on experimental autoimmune uveoretinitis (EAU).

Methods

To induce EIU, 7-week-old Lewis rats were injected subcutaneously with 200 μg lipopolysaccharide (LPS). Losartan was administered intravenously at the same time. The aqueous humor was collected from eyes 24 h after LPS injection. The number of infiltrating cells, protein concentration, and levels of tumor necrosis factor (TNF)-α and monocyte chemoattractant protein-1 (MCP-1) in the aqueous humor were determined. The collected eyes were immunohistochemically stained with monoclonal antibody for activated nuclear factor (NF)-κB. To induce EAU, C57BL/6 mice (6–8 weeks old) were immunized with human interphotoreceptor retinoid binding protein (hIRBP)-derived peptide emulsified in complete Freund’s adjuvant (CFA) and concomitantly injected with purified Bordetella pertussis toxin (PTX). Clinical severity of EAU and T cell proliferative response were analyzed.

Results

Losartan significantly suppressed the development of EIU. Numbers of aqueous cells of control EIU rats, those from EIU rats treated with 1 or 10 mg/kg of losratan were 75.3 ± 45.6 × 105, 27.9 ± 8.1 × 105, or 41.3 ± 30.9 × 105 cells/ml respectively (p < 0.01 vs control). Aqueous protein, TNF-α, and MCP-1 levels were also significantly decreased in a manner dependent on the amount of losartan administered (p < 0.01). Treatment of EIU rats with losartan suppressed activation of NF-κB at the iris ciliary body. Thus, the suppressive effect of losartan on ocular inflammation in EIU appeared to result from down-regulation of NF-κB activation and reduction of inflammatory cytokine production. On the other hand, in the EAU model, neither the clinical score nor the antigen-specific T cell proliferative response was significantly influenced by the treatment with losartan.

Conclusions

The present findings indicate that RAS may be involved in the acute inflammation of the eye, but not in T cell-dependent ocular autoimmunity. Antagonism of the RAS may be a potential prophylactic strategy for treatment of the human acute ocular inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amuchastegui SC, Azzollini N, Mister M, Pezzotta A, Perico N, Remuzzi G (1998) Chronic allograft nephropathy in the rat is improved by angiotensin II receptor blockade but not by calcium channel antagonism. J Am Soc Nephrol 9:1948–1955

    PubMed  CAS  Google Scholar 

  2. Andersson P, Cederholm T, Johansson AS, Palmblad J (2002) Captopril-impaired production of tumor necrosis factor-α-induced interleukin-1β in human monocytes is associated with altered intracellular distribution of nuclear factor-κB. J Lab Clin Med 140:103–109

    PubMed  CAS  Google Scholar 

  3. Baldwin AS Jr (1996) The NF-κB and I κB proteins: new discoveries and insights. Annu Rev Immunol 14:649–683

    Article  PubMed  CAS  Google Scholar 

  4. Barnes PJ (1997) Nuclear factor-κB. Int J Biochem Cell Biol 29:867–870

    Article  PubMed  CAS  Google Scholar 

  5. Barnes PJ, Karin M (1997) Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071

    Article  PubMed  CAS  Google Scholar 

  6. Benediktsson H, Chea R, Davidoff A, Paul LC (1996) Antihypertensive drug treatment in chronic renal allograft rejection in the rat. Effect on structure and function. Transplantation 62:1634–1642

    Article  PubMed  CAS  Google Scholar 

  7. Caspi RR, Roberge FG, McAllister CG, el-Saied M, Kuwabara T, Gery I, Hanna E, Nussenblatt RB (1986) T cell lines mediating experimental autoimmune uveoretinitis (EAU) in the rat. J Immunol 136:928–933

    PubMed  CAS  Google Scholar 

  8. Caspi RR, Roberge FG, Chan CC, Wiggert B, Chader GJ, Rozenszajn LA, Lando Z, Nussenblatt RB (1988) A new model of autoimmune disease. Experimental autoimmune uveoretinitis induced in mice with two different retinal antigens. J Immunol 140:1490–1495

    PubMed  CAS  Google Scholar 

  9. Chan CC, Tuaillon N, Li Q, Shen DF (2000) Therapeutic applications of antiflammin peptides in experimental ocular inflammation. Ann N Y Acad Sci 923:141–146

    Article  PubMed  CAS  Google Scholar 

  10. Chiu AT, Dunscomb J, Kosierowski J, Burton CR, Santomenna LD, Corjay MH, Benfield P (1993) The ligand binding signatures of the rat AT1A, AT1B and the human AT1 receptors are essentially identical. Biochem Biophys Res Commun 197:440–449

    Article  PubMed  CAS  Google Scholar 

  11. Chua CC, Hamdy RC, Chua BH (1998) Upregulation of vascular endothelial growth factor by angiotensin II in rat heart endothelial cells. Biochim Biophys Acta 1401:187–194

    Article  PubMed  CAS  Google Scholar 

  12. de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472

    PubMed  Google Scholar 

  13. de Vos AF, van Haren MA, Verhagen C, Hoekzema R, Kijlstra A (1994) Kinetics of intraocular tumor necrosis factor and interleukin-6 in endotoxin-induced uveitis in the rat. Investig Ophthalmol Vis Sci 35:1100–1106

    Google Scholar 

  14. Fukuzawa M, Satoh J, Sagara M, Muto G, Muto Y, Nishimura S, Miyaguchi S, Qiang XL, Sakata Y, Nakazawa T, Ikehata F, Ohta S, Toyota T (1997) Angiotensin converting enzyme inhibitors suppress production of tumor necrosis factor-α in vitro and in vivo. Immunopharmacology 36:49–55

    Article  PubMed  CAS  Google Scholar 

  15. Furukawa Y, Matsumori A, Hirozane T, Sasayama S (1996) Angiotensin II receptor antagonist TCV-116 reduces graft coronary artery disease and preserves graft status in a murine model. A comparative study with captopril. Circulation 93:333–339

    PubMed  CAS  Google Scholar 

  16. Godsel LM, Leon JS, Engman DM (2003a) Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists in experimental myocarditis. Curr Pharm Des 9:723–735

    Article  CAS  Google Scholar 

  17. Godsel LM, Leon JS, Wang K, Fornek JL, Molteni A, Engman DM (2003b) Captopril prevents experimental autoimmune myocarditis. J Immunol 171:346–352

    CAS  Google Scholar 

  18. Gregerson DS, Obritsch WF, Fling SP, Cameron JD (1986) S-antigen-specific rat T cell lines recognize peptide fragments of S-antigen and mediate experimental autoimmune uveoretinitis and pinealitis. J Immunol 136:2875–2882

    PubMed  CAS  Google Scholar 

  19. Gu L, Tseng SC, Rollins BJ (1999) Monocyte chemoattractant protein-1. Chem Immunol 72:7–29

    PubMed  CAS  Google Scholar 

  20. Hisada Y, Sugaya T, Yamanouchi M, Uchida H, Fujimura H, Sakurai H, Fukamizu A, Murakami K (1999) Angiotensin II plays a pathogenic role in immune-mediated renal injury in mice. J Clin Invest 103:627–635

    Article  PubMed  CAS  Google Scholar 

  21. Ilieva I, Ohgami K, Jin XH, Suzuki Y, Shiratori K, Yoshida K, Kase S, Ohno S (2006) Captopril suppresses inflammation in endotoxin-induced uveitis in rats. Exp Eye Res 83:651–657

    Article  PubMed  CAS  Google Scholar 

  22. Inokuchi Y, Morohashi T, Kawana I, Nagashima Y, Kihara M, Umemura S (2005) Amelioration of 2,4,6-trinitrobenzene sulphonic acid induced colitis in angiotensinogen gene knockout mice. Gut 54:349–356

    Article  PubMed  CAS  Google Scholar 

  23. Kitamei H, Iwabuchi K, Namba K, Yoshida K, Yanagawa Y, Kitaichi N, Kitamura M, Ohno S, Onoé K (2006) Amelioration of experimental autoimmune uveoretinitis (EAU) with an inhibitor of nuclear factor-κB (NF-κB), pyrrolidine dithiocarbamate. J Leukoc Biol 79:1193–1201

    Article  PubMed  CAS  Google Scholar 

  24. Kramer C, Sunkomat J, Witte J, Luchtefeld M, Walden M, Schmidt B, Tsikas D, Boger RH, Forssmann WG, Drexler H, Schieffer B (2002) Angiotensin II receptor-independent antiinflammatory and antiaggregatory properties of losartan: role of the active metabolite EXP3179. Circ Res 90:770–776

    Article  PubMed  Google Scholar 

  25. Kranzhofer R, Browatzki M, Schmidt J, Kubler W (1999) Angiotensin II activates the proinflammatory transcription factor nuclear factor-κB in human monocytes. Biochem Biophys Res Commun 257:826–828

    Article  PubMed  CAS  Google Scholar 

  26. Kurihara T, Ozawa Y, Shinoda K, Nagai N, Inoue M, Oike Y, Tsubota K, Ishida S, Okano H (2006) Neuroprotective effects of angiotensin II type 1 receptor (AT1R) blocker, telmisartan, via modulating AT1R and AT2R signaling in retinal inflammation. Investig Ophthalmol Vis Sci 47:5545–5552

    Article  Google Scholar 

  27. Levens NR (1984) Modulation of jejunal ion and water absorption by endogenous angiotensin after dehydration. Am J Physiol 246:G700–G709

    PubMed  CAS  Google Scholar 

  28. Li Q, Peng B, Whitcup SM, Jang SU, Chan CC (1995) Endotoxin induced uveitis in the mouse: susceptibility and genetic control. Exp Eye Res 61:629–632

    Article  PubMed  CAS  Google Scholar 

  29. Miyoshi M, Nagata K, Imoto T, Goto O, Ishida A, Watanabe T (2003) ANG II is involved in the LPS-induced production of proinflammatory cytokines in dehydrated rats. Am J Physiol Regul Integr Comp Physiol 284:R1092–R1097

    PubMed  CAS  Google Scholar 

  30. Mochizuki M, Kuwabara T, McAllister C, Nussenblatt RB, Gery I (1985) Adoptive transfer of experimental autoimmune uveoretinitis in rats. Immunopathogenic mechanisms and histologic features. Investig Ophthalmol Vis Sci 26:1–9

    CAS  Google Scholar 

  31. Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE (1991) Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 351:233–236

    Article  PubMed  CAS  Google Scholar 

  32. Nagai N, Oike Y, Noda K, Urano T, Kubota Y, Ozawa Y, Shinoda H, Koto T, Shinoda K, Inoue M, Tsubota K, Yamashiro K, Suda T, Ishida S (2005) Suppression of ocular inflammation in endotoxin-induced uveitis by blocking the angiotensin II type 1 receptor. Investig Ophthalmol Vis Sci 46:2925–2931

    Article  Google Scholar 

  33. Peeters AC, Netea MG, Kullberg BJ, Thien T, van der Meer JW (1998) The effect of renin-angiotensin system inhibitors on pro- and anti-inflammatory cytokine production. Immunology 94:376–379

    Article  PubMed  CAS  Google Scholar 

  34. Planck SR, Huang XN, Robertson JE, Rosenbaum JT (1994) Cytokine mRNA levels in rat ocular tissues after systemic endotoxin treatment. Investig Ophthalmol Vis Sci 35:924–930

    CAS  Google Scholar 

  35. Price A, Lockhart JC, Ferrell WR, Gsell W, McLean S, Sturrock RD (2007) Angiotensin II type 1 receptor as a novel therapeutic target in rheumatoid arthritis: in vivo analyses in rodent models of arthritis and ex vivo analyses in human inflammatory synovitis. Arthritis Rheum 56:441–447

    Article  PubMed  CAS  Google Scholar 

  36. Rosenbaum JT, McDevitt HO, Guss RB, Egbert PR (1980) Endotoxin-induced uveitis in rats as a model for human disease. Nature 286:611–613

    Article  PubMed  CAS  Google Scholar 

  37. Rossig L, Dimmeler S, Zeiher AM (2001) Apoptosis in the vascular wall and atherosclerosis. Basic Res Cardiol 96:11–22

    Article  PubMed  CAS  Google Scholar 

  38. Ruiz-Ortega M, Bustos C, Hernandez-Presa MA, Lorenzo O, Plaza JJ, Egido J (1998) Angiotensin II participates in mononuclear cell recruitment in experimental immune complex nephritis through nuclear factor-κB activation and monocyte chemoattractant protein-1 synthesis. J Immunol 161:430–439

    PubMed  CAS  Google Scholar 

  39. Sadoshima J (2002) Novel AT(1) receptor-independent functions of losartan. Circ Res 90:754–756

    Article  PubMed  CAS  Google Scholar 

  40. Sandberg K (1994) Structural analysis and regulation of angiotensin II receptors. TEM 5:28–35

    CAS  PubMed  Google Scholar 

  41. Sasamura H, Hein L, Krieger JE, Pratt RE, Kobilka BK, Dzau VJ (1992) Cloning, characterization, and expression of two angiotensin receptor (AT-1) isoforms from the mouse genome. Biochem Biophys Res Commun 185:253–259

    Article  PubMed  CAS  Google Scholar 

  42. Shimizu H, Miyoshi M, Matsumoto K, Goto O, Imoto T, Watanabe T (2004) The effect of central injection of angiotensin-converting enzyme inhibitor and the angiotensin type 1 receptor antagonist on the induction by lipopolysaccharide of fever and brain interleukin-1β response in rats. J Pharmacol Exp Ther 308:865–873

    Article  PubMed  CAS  Google Scholar 

  43. Tanaka A, Matsumori A, Wang W, Sasayama S (1994) An angiotensin II receptor antagonist reduces myocardial damage in an animal model of myocarditis. Circulation 90:2051–2055

    PubMed  CAS  Google Scholar 

  44. Taylor AW, Yee DG, Nishida T, Namba K (2000) Neuropeptide regulation of immunity. The immunosuppressive activity of α-melanocyte-stimulating hormone (α-MSH). Ann NY Acad Sci 917:239–247

    Article  PubMed  CAS  Google Scholar 

  45. Tegeder I, Pfeilschifter J, Geisslinger G (2001) Cyclooxygenase-independent actions of cyclooxygenase inhibitors. Faseb J 15:2057–2072

    Article  PubMed  CAS  Google Scholar 

  46. Timmermans PB, Smith RD (1994) Angiotensin II receptor subtypes: selective antagonists and functional correlates. Eur Heart J 15(Suppl D):79–87

    PubMed  CAS  Google Scholar 

  47. Tuaillon N, Shen DF, Berger RB, Lu B, Rollins BJ, Chan CC (2002) MCP-1 expression in endotoxin-induced uveitis. Investig Ophthalmol Vis Sci 43:1493–1498

    Google Scholar 

  48. Ueda A, Okuda K, Ohno S, Shirai A, Igarashi T, Matsunaga K, Fukushima J, Kawamoto S, Ishigatsubo Y, Okubo T (1994) NF-κB and Sp1 regulate transcription of the human monocyte chemoattractant protein-1 gene. J Immunol 153:2052–2063

    PubMed  CAS  Google Scholar 

  49. Verma MJ, Lloyd A, Rager H, Strieter R, Kunkel S, Taub D, Wakefield D (1997) Chemokines in acute anterior uveitis. Curr Eye Res 16:1202–1208

    Article  PubMed  CAS  Google Scholar 

  50. Wang Y, Rangan GK, Goodwin B, Tay YC, Harris DC (2000) Lipopolysaccharide-induced MCP-1 gene expression in rat tubular epithelial cells is nuclear factor-κB dependent. Kidney Int 57:2011–2022

    Article  PubMed  CAS  Google Scholar 

  51. Wesselman JP, De Mey JG (2002) Angiotensin and cytoskeletal proteins: role in vascular remodeling. Curr Hypertens Rep 4:63–70

    Article  PubMed  Google Scholar 

  52. Wolf G, Wenzel U, Burns KD, Harris RC, Stahl RA, Thaiss F (2002) Angiotensin II activates nuclear transcription factor-κB through AT1 and AT2 receptors. Kidney Int 61:1986–1995

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research (S), (B) and (C) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, by Grant-in-Aid for Scientific Research on Priority Areas from MEXT Japan, and by a Grant for Researches on Sensory and Communicative Disorders, Ministry of Health, Labour and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Onoé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazaki, A., Kitaichi, N., Ohgami, K. et al. Anti-inflammatory effect of angiotensin type 1 receptor antagonist on endotoxin-induced uveitis in rats. Graefes Arch Clin Exp Ophthalmol 246, 747–757 (2008). https://doi.org/10.1007/s00417-007-0730-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-007-0730-2

Keywords

Navigation