Skip to main content
Log in

fs-Laser induced elasticity changes to improve presbyopic lens accommodation

  • Medical Ophtalmology
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

According to the Helmholtz theory of accommodation, one of the major reasons for the development of presbyopia is the progressive sclerosis of the crystalline lens. However, both the ciliary muscle and the lens capsule stay active and elastic. Thus, the concept for regaining the deformation-ability of the crystalline lens is to create microincisions inside lens tissue to achieve gliding planes.

Methods

For the preparation of the microincisions, near-infrared femtosecond laser pulses are used, generating laser-induced optical breakdowns. Different cutting patterns were performed, and the elasticity regain of the lenses were measured with Fisher’s spinning test for thickness determination.

Results

The creation of gliding planes inside lens tissue shows very good results in terms of increasing the deformation-ability. The optimization of laser parameters leads to a minimally invasive surgery with no remarkable side effects like residual gas bubbles. Furthermore, ex vivo elasticity measurements of untreated and treated pig lenses show an improvement in the flexibility of the lens. The deformation-ability increases up to 26% with a very low standard deviation (1.6%) and a high significance (p < 0.05).

Conclusion

Generating particular cutting patterns inside lens tissue can increase the deformation-ability of the crystalline lens. Thus, it might be one possible way to treat presbyopia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Atchison DA (1995) Accommodation and presbyopia. Ophthal Physiol Opt 15(4):255–272

    Article  CAS  Google Scholar 

  2. Burd HJ, Judge SJ, Cross JA (2002) Numerical modelling of the accommodationg lens. Vis Res 42:2235–2251

    Article  PubMed  CAS  Google Scholar 

  3. Fisher RF (1971) The elastic constant of the human lens. J Physiol 212:147–180

    PubMed  CAS  Google Scholar 

  4. Fisher RF, Pettit BE (1973) Presbyopia and the water content of the human crystalline lens. J Physiol 234:443–447, 1973

    PubMed  CAS  Google Scholar 

  5. Fisher RF (1977) The force of contraction of the human ciliary muscle during accomodation. J Physiol 270:51–74

    PubMed  CAS  Google Scholar 

  6. Fisher RF (1988) The mechanics of accommodation in relation to presbyopia. Eye 988(2):646–649

    Google Scholar 

  7. Gerten G, Ripken T, Breitenfeld P, Kermani O, Lubatschowski H, Oberheide U (2007) In-vitro- und In-vivo-Untersuchungen zur Presbyopiebehandlung mit Femtosekundenlasern. Ophthalmologe 104(1):40–46

    Article  PubMed  CAS  Google Scholar 

  8. Glasser A, Campbell MWC (1996) Physical and optical changes in the human crystalline lens with age and their relationship to presbyopia. Invest. Ophthal Vis Sci 37:757

    Google Scholar 

  9. Glasser A, Campbell MWC (1999) Presbyopia and the optical changes in the human crystalline lens with age. Vision Res Vol 38(2):209–229

    Article  Google Scholar 

  10. Glasser A, Campbell MWC (1999) Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Vis Res 39:1991–2015

    Article  PubMed  CAS  Google Scholar 

  11. Heisterkamp A (2002) Einsatz ultrakurzer Laserpulse in der refraktiven Laserchirurgie. Dissertation, Universitaet Hannover

  12. Heisterkamp A, Ripken T, Mamom T, Drommer W, Welling H, Ertmer W, Lubatschowski H (2002) Nonlinear side effects of fs pulses inside corneal tissue during photodisruption. Appl Phys B 74:419–425

    Article  CAS  Google Scholar 

  13. von Helmholtz HH (1962) Handbuch der physiologischen Optik. In: Southall JPC (ed.) Helmholtz’s treatise on physiological optics. Dover, New York, pp 143–172

    Google Scholar 

  14. Kogelnik H, Li T (1996) Laser Beams and Resonators. Proc. IEEE (54) 1312ff.

  15. Krueger RR, Sun X, Stroh J, Myers RI (2001) Experimental increase in accommodative potential after neodymium: Yttrium-Aluminum-Garnet laser photodisruption of paired cadaver lenses. Ophthalmology 108:2122–2129

    Article  PubMed  CAS  Google Scholar 

  16. Krueger RR, Kuszak J, Lubatschowski H, Myers RI, Ripken T, Heisterkamp A (2005) First safety study of femtosecond laser photodisruption in animal lenses: Tissue morphology and cataractogenesis. J Cataract Refract Surgery 31(12):2386–2394

    Article  Google Scholar 

  17. Liu X, Kurtz RM, Braun A, Liu HH, Sacks Z, Juhasz T (1997) Intrastromal corneal surgery with femtosecond laser pulses. Conference on Lasers and Electro-Optics, 1997 OSA Technical Digest Series (Optical Society of America, Washington DC, 1997), vol. 11, p. 169

  18. Myers RI, Krueger RR (1998) Novel approaches to correction of presbyopia with laser modification of the crystalline lens. J Refract Surg 14:136–139

    PubMed  CAS  Google Scholar 

  19. Noack J (1998) Optischer Durchbruch in Wasser mit Laserpulsen zwischen 100 ns und 100 fs. Ph. D. dissertation, Medical Univ. Luebeck, Luebeck, Germany, Fakultaet

  20. Pau H, Kranz J (1991) The increasing sclerosis of the human lens with age and its relevance to accommodation and presbyopia. Graefe Arch Clin Exp Ophthalmol 229:294–296

    Article  CAS  Google Scholar 

  21. Ripken T, Oberheide U, Ziltz C, Gerten G, Ertmer W, Lubatschowski H (2005) Fs-laser induced elasticity changes to improve presbyopic lens accommodation. Proceedings of SPIE, Vol. 5688 Ophthalmic Technologies XV

  22. Vilupuru AS, Glasser A (2001) Optical and biometric relationships of the isolated pig crystalline lens. Ophthal Physiol Opt 21(4):296–311

    Article  CAS  Google Scholar 

  23. Vogel A, Noack J, Nahen K, Theisen D, Birngruber R, Hammer DX, Noojin GD, Rockwell BA (1998) Laser-induced breakdown in the eye at pulse durations from 80 ns to 100 fs. Proc SPIE 3255:34–47

    Article  Google Scholar 

  24. Vogel A (2000) Optical breakdown in water and ocular media and its use for intraocular photodisruption. Postdoctoral lecture qualification thesis, University of Luebeck, Germany

  25. Weeber HA, Martin H (2003) The role of the capsular bag in accommodation. In: Guthoff R, Ludwig K (eds.) Current aspects of human accommodation II. Kaden Verlag, Heidelberg

    Google Scholar 

Download references

Acknowledgments

Parts of this work were supported by the German Ministry of Education and Research (BMBF), FKZ 13N8712 and FKZ 13N8709.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammo Ripken.

Additional information

Parts of this work were supported by the German Ministry of Education and Research (BMBF), FKZ 13N8712 and FKZ 13N8709.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ripken, T., Oberheide, U., Fromm, M. et al. fs-Laser induced elasticity changes to improve presbyopic lens accommodation. Graefes Arch Clin Exp Ophthalmol 246, 897–906 (2008). https://doi.org/10.1007/s00417-007-0699-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-007-0699-x

Keywords

Navigation