Skip to main content

Advertisement

Log in

Influence of callosal transfer on visual cortical evoked response and the implication in the development of a visual prosthesis

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The development of a visual prosthesis has been limited by an incomplete understanding of functional changes of the visual cortex accompanying deafferentation. In particular, the role of the corpus callosum in modulating these changes has not been fully evaluated. Recent experimental evidence suggests that through synaptic modulation, short-term (4–5 days) visual deafferentation can induce plastic changes in the visual cortex, leading to adaptive enhancement of residual visual input. We therefore investigated whether a compensatory rerouting of visual information can occur via the indirect transcallosal linkage after deafferentation and the influence of this interhemispheric communication on the visual evoked response of each hemisphere.

Methods

In albino rabbits, misrouting of uncrossed optic fibres reduces ipsilateral input to a negligible degree. We thus took advantage of this congenital anomaly to model unilateral cortical and ocular deafferentation by eliminating visual input from one eye and recorded the visual evoked potential (VEP) from the intact eye.

Results

In keeping with the chiasmal anomaly, no VEP was elicited from the hemisphere ipsilateral to the intact eye. This remained unchanged following unilateral visual deafferentation. The amplitude and latency of the VEP in the fellow hemisphere, however, were significantly decreased in the deafferented animals.

Conclusion

Our data suggest that callosal linkage does not contribute to visual evoked responses and this is not changed after short-term deafferentation. The decrease in amplitude and latency of evoked responses in the hemisphere ipsilateral to the treated eye, however, confirms the facilitatory role of callosal transfer. This observation highlights the importance of bicortical stimulation in the future design of a cortical visual prosthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dobelle WH (2000) Artificial vision for the blind by connecting a television camera to the visual cortex. Asaio J 46:3–9

    Article  PubMed  CAS  Google Scholar 

  2. Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 10(Suppl):S42–S50

    Article  PubMed  CAS  Google Scholar 

  3. Hunt DW, Margaron P (2003) Status of therapies in development for the treatment of age-related macular degeneration. IDrugs 6:464–469

    PubMed  CAS  Google Scholar 

  4. Harvey AR, Hu Y, Leaver SG, Mellough CB, Park K, Verhaagen J, Plant GW, Cui Q (2006) Gene therapy and transplantation in CNS repair: the visual system. Prog Retin Eye Res 25:449–489

    Article  PubMed  CAS  Google Scholar 

  5. Loeb GE (1990) Cochlear prosthetics. Annu Rev Neurosci 13:357–371

    Article  PubMed  CAS  Google Scholar 

  6. Long DM (1977) Electrical stimulation for the control of pain. Arch Surg 112:884–888

    PubMed  CAS  Google Scholar 

  7. Koller W, Pahwa R, Busenbark K, Hubble J, Wilkinson S, Lang A, Tuite P, Sime E, Lazano A, Hauser R et al (1997) High-frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol 42:292–299

    Article  PubMed  CAS  Google Scholar 

  8. Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol 196:479–493

    PubMed  CAS  Google Scholar 

  9. Zrenner E (2002) Will retinal implants restore vision? Science 295:1022–1025

    Article  PubMed  CAS  Google Scholar 

  10. Weiland JD, Humayun MS (2006) Intraocular retinal prosthesis. Big steps to sight restoration. IEEE Eng Med Biol Mag 25:60–66

    Article  PubMed  Google Scholar 

  11. Fernandez E, Pelayo F, Romero S, Bongard M, Marin C, Alfaro A, Merabet L (2005) Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity. J Neural Eng 2:R1–R12

    Article  PubMed  CAS  Google Scholar 

  12. Lickey ME, Pham TA, Gordon B (2004) Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice. Vision Res 44:3381–3387

    Article  PubMed  Google Scholar 

  13. Sawtell NB, Frenkel MY, Philpot BD, Nakazawa K, Tonegawa S, Bear MF (2003) NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38:977–985

    Article  PubMed  CAS  Google Scholar 

  14. Hubel DH, Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol 206:419–436

    PubMed  CAS  Google Scholar 

  15. Aboitiz F, Montiel J (2003) One hundred million years of interhemispheric communication: the history of the corpus callosum. Braz J Med Biol Res 36:409–420

    Article  PubMed  CAS  Google Scholar 

  16. Yinon U, Hammer A, Podell M (1982) The hemispheric dominance of cortical cells in the absence of direct visual pathways. Brain Res 232:187–190

    Article  PubMed  CAS  Google Scholar 

  17. Podell M, Yinon U, Hammer A (1984) Properties of visual cortical cells of the intact and the deafferented hemisphere of unilateral optic tract sectioned acute and chronic adult cats. Exp Brain Res 55:91–96

    Article  PubMed  CAS  Google Scholar 

  18. Choudhury BP (1987) Visual cortex in the albino rabbit. Exp Brain Res 66:565–571

    Article  PubMed  CAS  Google Scholar 

  19. Yamauchi Y, Franco LM, Jackson DJ, Naber JF, Ziv RO, Rizzo JF, Kaplan HJ, Enzmann V (2005) Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit. J Neural Eng 2:S48–S56

    Article  PubMed  Google Scholar 

  20. Sakaguchi H, Fujikado T, Fang X, Kanda H, Osanai M, Nakauchi K, Ikuno Y, Kamei M, Yagi T, Nishimura S et al (2004) Transretinal electrical stimulation with a suprachoroidal multichannel electrode in rabbit eyes. Jpn J Ophthalmol 48:256–261

    Article  PubMed  Google Scholar 

  21. Houzel JC, Carvalho ML, Lent R (2002) Interhemispheric connections between primary visual areas: beyond the midline rule. Braz J Med Biol Res 35:1441–1453

    PubMed  Google Scholar 

  22. Silveira LC, Heywood CA, Cowey A (1989) Direct and transcallosal contribution to the cortical visual evoked response in rats. Behav Brain Res 31:291–294

    Article  PubMed  CAS  Google Scholar 

  23. Sanderson KJ (1975) Retinogeniculate projections in the rabbits of the albino allelomorphic series1. J Comp Neurol 159:15–27

    Article  PubMed  CAS  Google Scholar 

  24. Lund RD, Lund JS, Wise RP (1974) The organization of the retinal projection to the dorsal lateral geniculate nucleus in pigmented and albino rats. J Comp Neurol 158:383–403

    Article  PubMed  CAS  Google Scholar 

  25. Sun JS, Li B, Ma MH, Diao YC (1994) Transcallosal circuitry revealed by blocking and disinhibiting callosal input in the cat. Vis Neurosci 11:189–197

    Article  PubMed  CAS  Google Scholar 

  26. Eason RG, Oden D, White CT (1967) Visullay evoked cortical potentials and reaction time in relation to site of retinal stimulation. Electroencephalogr Clin Neurophysiol 22:313–324

    Article  PubMed  CAS  Google Scholar 

  27. Osaka N, Yamamoto M (1978) VEP latency and RT as power functions of luminance in the peripheral visual field. Electroencephalogr Clin Neurophysiol 44:785–788

    Article  PubMed  CAS  Google Scholar 

  28. West DC, Wolstencroft JH (1983) Strength-duration characteristics of myelinated and non-myelinated bulbospinal axons in the cat spinal cord. J Physiol 337:37–50

    PubMed  CAS  Google Scholar 

  29. Brummer SB, McHardy J, Turner MJ (1977) Electrical stimulation with Pt electrodes: Trace analysis for dissolved platinum and other dissolved electrochemical products. Brain Behav Evol 14:10–22

    PubMed  CAS  Google Scholar 

  30. Cowey A, Walsh V (2000) Magnetically induced phosphenes in sighted, blind and blindsighted observers. Neuroreport 11:3269–3273

    Article  PubMed  CAS  Google Scholar 

  31. Gothe J, Brandt SA, Irlbacher K, Roricht S, Sabel BA, Meyer BU (2002) Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation. Brain 125:479–490

    Article  PubMed  Google Scholar 

  32. Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O’Rourke DK, Vallabhanath P (1996) Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119 ( Pt 2):507–522

    Article  PubMed  Google Scholar 

  33. Dobelle WH, Mladejovsky MG (1974) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol 243:553–576

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy L. Siu.

Additional information

The authors have no financial relationship with any organisation concerning this research project. The authors have full control of all primary data and we agree to allow Graefe’s Archive for Clinical and Experimental Ophthalmology to review our data upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siu, T.L., Morley, J.W. Influence of callosal transfer on visual cortical evoked response and the implication in the development of a visual prosthesis. Graefes Arch Clin Exp Ophthalmol 245, 1797–1803 (2007). https://doi.org/10.1007/s00417-007-0648-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-007-0648-8

Keywords

Navigation