Skip to main content
Log in

Prolongation of corneal allograft survival by CTLA4-FasL in a murine model

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To investigate the therapeutic effect of CTLA4-FasL—B7 costimulatory pathway blockage—on graft survival in a murine model of corneal transplantation.

Methods

Orthotopic penetrating keratoplasty was performed on BALB/c mice. The mice were randomized into four groups: the isograft group, untreated allograft group, cyclosporine A drug delivery system (CsA DDS)-anterior chamber implanted group, and 10 μg/mL CTLA4-FasL-treated group. Allografts were from C57BL/6 mice. Survival time of corneal grafts was evaluated. Immunohistological method and TdT-mediated dUTP Nick End Labeling (TUNEL) were applied for the detection of CD4+ T cells and apoptotic cells in corneal transplants. To assess whether peripheral immune tolerance appeared after the treatment of CTLA4-FasL, CsA DDS-implanted- and CTLA4-FasL-treated BALB/c mice with clear grafts received skin allografts at 4 weeks after keratoplasty, and the status of corneal transplants were observed when skin grafts were rejected.

Results

Allografts in the CTLA4-FasL group (median survival time [MST] = 106 days, p = 0.0042) and the CsA DDS group (MST = 60 days, p = 0.0037) revealed extending survival time, compared with that in the untreated allograft group (MST = 14 days). There were significantly fewer CD4-positive T cells in both the isograft group and the CsA DDS group. In the untreated allograft group, the number of CD4+ T cells gradually increased from day 1 until the final day of observation (day 21). By contrast, it reached a peak on day 7 and then absolutely reduced in the CTLA4-FasL group. Many apoptotic cells were detected on day 7 in the CTLA4-FasL group, but very few were seen in the other groups. Within 30 days of skin-graft rejection, previously healthy and long-standing corneal grafts became rejected in the CsA DDS group but remained clear in the CTLA4-FasL group.

Conclusions

CTLA4-FasL can prolong the survival time of corneal allografts in mice, exerting a negative regulation on T-cell activation simultaneously by blocking B7 costimulatory signals and inducing Fas-FasL apoptotic pathway. Due to the adjunctive role of FasL, it also appears to be a potential activity of tolerance induction through T-cell apoptotic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Larkin DF, Calder VL, Lightman SL (1997) Identification and characterization of cells infiltrating the graft and aqueous humour in rat corneal allograft rejection. Clin Exp Immunol 107:381–391

    Article  PubMed  CAS  Google Scholar 

  2. Williams KA, Muehlberg SM, Lewis RF, Coster DJ (1995) How successful is corneal transplantation? A report from the Australian Corneal Graft Register. Eye 9:219–227

    PubMed  Google Scholar 

  3. Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, Golstein PA (1987) A new member of the immunoglobulin superfamily-CTLA4. Nature 328:267–270

    Article  PubMed  CAS  Google Scholar 

  4. Comer RM, King WJ, Ardjomand N, Theoharis S, George AJ, Larkin DF (2002) Effect of administration of CTLA4-Ig as protein or cDNA on corneal allograft survival. Invest Ophthalmol Vis Sci 43:1095–1103

    PubMed  Google Scholar 

  5. Gebhardt BM, Hodkin M, Varnell ED, Kaufman HE (1999) Protection of corneal allografts by CTLA4-Ig. Cornea 18:314–320

    Article  PubMed  CAS  Google Scholar 

  6. Hoffmann F, Zhang EP, Pohl T, Kunzendorf U, Wachtlin J, Bulfone-Paus S (1997) Inhibition of corneal allograft reaction by CTLA4-Ig. Graefes Arch Clin Exp Ophthalmol 235:535–540

    Article  PubMed  CAS  Google Scholar 

  7. Smart PM, Grifith TS, Usui N, Pepose J, Yu X, Ferguson TA (1997) CD95 ligand (FasL) induced apoptosis is necessary for corneal allografts survival. J Clin Invest 99:396–402

    Article  Google Scholar 

  8. Yamagami S, Kawashima H, Tsuru T (1997) Role of Fas-Fas ligand interactions in the immunorejection of allogeneic mouse corneal transplants. Transplantation 64:1107–1111

    Article  PubMed  CAS  Google Scholar 

  9. Elhalel MD, Huang JH, Schmidt W, Rachmilewitz J, Tykocinski ML (2003) CTLA-4. FasL induces alloantigen-specific hyporesponsiveness. J Immunol 170:5842–5850

    PubMed  CAS  Google Scholar 

  10. Huang JH, Tykocinski ML (2001) CTLA-4-Fas ligand functions as a trans signal converter protein in bridging antigen-presenting cells and T cells. Int Immunol 13:529–539

    Article  PubMed  CAS  Google Scholar 

  11. Sonoda Y, Streilein JW (1992) Orthotopic corneal transplantation in mice-evidence that the immunogenetic rules of rejection do not apply. Transplantation 54:694–704

    Article  PubMed  CAS  Google Scholar 

  12. Joo CK, Pepose JS, Stuart PM (1995) T-cell mediated responses in a murine model of orthotopic corneal transplantation. Invest Ophthalmol Vis Sci 36:1530–1540

    PubMed  CAS  Google Scholar 

  13. Sonoda Y, Sano Y, Ksander B, Streilein JW (1995) Characterization of cell-mediated immune responses elicited by orthotopic corneal allografts in mice. Invest Ophthalmol Vis Sci 36:427–434

    PubMed  CAS  Google Scholar 

  14. Yamada J, Kurimoto I, Streilein JW (1999) Role of CD4+ T cells in immunobiology of orthotopic corneal transplants in mice. Invest Ophthalmol Vis Sci 40:2614–2621

    PubMed  CAS  Google Scholar 

  15. Burke JF Jr, Pirsch JD, Ramos EL, Salomon DR, Stablein DM, van Buren DH, West JC (1994) Long-term efficacy and safety of cyclosporine in renal-transplant recipients. N Engl J Med 331:358–363

    Article  PubMed  Google Scholar 

  16. Simmons RL, Wang SC (1991) New horizons in immunosuppression. Transplant Proc 23:2152–2156

    PubMed  CAS  Google Scholar 

  17. Newton C, Gebhardt B, Kaufman HE (1988) Topically applied cyclosporine in azone prolongs corneal allograft survival. Invest Ophthalmol Vis Sci 29:208–215

    PubMed  CAS  Google Scholar 

  18. Hill JC (1989) The use of cyclosporine in high-risk keratoplasty. Am J Ophthalmol 107:506–510

    PubMed  CAS  Google Scholar 

  19. Bouchard CS, Kappil JC, Duffner L (1995) The role of systemic cyclosporine dosing schedule on corneal allograft survival in the rat model. Curr Eye Res 14:421–424

    PubMed  CAS  Google Scholar 

  20. Xie L, Shi W, Wang Z, Bei J, Wang S (2001) Prolongation of corneal allograft survival using cyclosporine in a polylactide-co-glycolide polymer. Cornea 20:748–752

    Article  PubMed  CAS  Google Scholar 

  21. Xie L, Shi W, Li S, Zeng Q (2002) The use of an implantable cyclosporine A delivery system for preventing corneal allograft rejection in patients with alkali-burned corneas. Ophthalmic Pract 20:302–306

    Google Scholar 

  22. Dong X, Shi W, Yuan G, Xie L, Wang S, Lin P (2006) Intravitreal implantation of the biodegradable cyclosporin A drug delivery system for experimental chronic uveitis. Graefes Arch Clin Exp Ophthalmol 244:492–497

    Article  PubMed  CAS  Google Scholar 

  23. Feng YG, Jin YZ, Zhang QY, Hao J, Wang GM, Xie SS (2005) CTLA4-Fas ligand gene transfer mediated by adenovirus induce long-time survival of murine cardiac allografts. Transplant Proc 37:2379–2381

    Article  PubMed  CAS  Google Scholar 

  24. Jin Y, Qu A, Wang GM, Hao J, Gao X, Xie S (2004) Simultaneous stimulation of Fas-mediated apoptosis and blockade of costimulation prevent autoimmune diabetes in mice induced by multiple low-dose streptozotocin. Gene Ther 11:982–991

    Article  PubMed  CAS  Google Scholar 

  25. Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, Lenardo MJ (1995) Induction of apoptosis in mature T cells by tumor necrosis factor. Nature 377:348–351

    Article  PubMed  CAS  Google Scholar 

  26. Ehl S, Hoffman-Rohrer U, Nagata S, Hengartner H, Zinkernagel R (1996) Different susceptibility of cytotoxic T cells to CD95(Fas/APO-1) ligand-mediated cell death after activation in vitro versus in vivo. J Immunol 156:2357–2360

    PubMed  CAS  Google Scholar 

  27. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA (1995) Fas Ligand-induced apoptosis as a mechanism of immune privilege. Science 270:1189–1192

    Article  PubMed  CAS  Google Scholar 

  28. Lee RS, Rusche JR, Maloney ME, Sachs DH, Sayegh MH, Madsen JC (2001) CTLA4Ig-induced linked regulation of allogeneic T cell responses. J Immunol 166:1572–1582

    PubMed  CAS  Google Scholar 

  29. Stuart PM, Yin X, Plambeck S, Pan F, Ferguson TA (2005) The role of Fas ligand as an effector molecule in corneal graft rejection. Eur J Immunol 35:2591–2597

    Article  PubMed  CAS  Google Scholar 

  30. Wells AD, Li XC, Li Y, Walsh MC, Zheng XX, Wu Z, Nunez G, Tang A, Sayegh M, Hancock WW, Strom TB, Turka LA (1999) Requirement for T cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med 5:1303–1307

    Article  PubMed  CAS  Google Scholar 

  31. Li XC, Strom TB, Turka LA, Wells AD (2001) T cell death and transplantation tolerance. Immunity 14:407–416

    Article  PubMed  CAS  Google Scholar 

  32. Shi W, Xie L (2004) CTLA4-Ig prevents corneal allograft rejection in mice. Chin J Ophthalmol 40:696–700

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (30271239), the Natural Science Foundation of Shandong Province (Y2002c14), the National Basic Research Program of China (973 Program) (2003cb515500), and the Department of Science and Technology of Shandong Province (021100105). The authors thank Ms. Ping Lin for her editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, W., Chen, M. & Xie, L. Prolongation of corneal allograft survival by CTLA4-FasL in a murine model. Graefes Arch Clin Exp Ophthalmol 245, 1691–1697 (2007). https://doi.org/10.1007/s00417-007-0606-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-007-0606-5

Keywords

Navigation