Skip to main content

Advertisement

Log in

Stabilization and comparison of TOP and Bracketing perimetric strategies using a threshold spatial filter

  • Clinical Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To evaluate a new perimetric spatial filter that takes into account relations of dependence between regions of the glaucomatous visual field.

Methods

51 glaucoma patients and 30 controls were examined using the Octopus 1-2-3 on four occasions using program 32; two with TOP and two with Bracketing (BRA) strategy. Each threshold was replaced by a filtered threshold, calculated as the mean of its own value and the four points best correlated with it, weighted with the correlation coefficient (r) that relates them.

Results

Application of the filter had minimal effect on the absolute mean defect (MD) but reduced the square root of loss variance (sLV) by 17.6% in TOP and 28.8% in BRA, increasing the similarity between their results. Filtered TOP and BRA thresholds were more similar than those obtained in the two unfiltered BRA examinations. Filtering reduced the value of short fluctuation by 28.6% in TOP and 45.4% in BRA and reduced sLV fluctuation by 14.3% in TOP and 24.2% in BRA, thus harmonizing the two strategies for these two parameters (p > 0.05). The influence of filtering on MD fluctuation was minimal (p > 0.05). In normal subjects the number of points beyond 5 dB of normality (not reproducible false scotomas) reduced from 1.5% to 0.2% in TOP and from 4.9% to 1.6% in BRA, while in glaucoma patients changes were minimal.

Conclusions

The proposed spatial filter stabilized perimetric results, acting with greater effect on BRA than on TOP, making their results more similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson AJ (2003) Spatial resolution of the tendency-oriented perimetry algorithm. Invest Ophthalmol Vis Sci 44:1962–1968

    Article  PubMed  Google Scholar 

  2. Asman P, Wild JM, Heijl A (2004) Appearance of the pattern deviation map as a function of change in area of localized field loss. Invest Ophthalmol Vis Sci 45:3099–3106

    Article  PubMed  Google Scholar 

  3. Bebie H, Flammer J, Bebie T (1989) The cumulative defect curve: separation of local and diffuse components of visual field damage. Graefes Arch Clin Exp Ophthalmol 227:9–12

    Article  PubMed  CAS  Google Scholar 

  4. Bengtsson B, Olsson J, Heijl A, Rootzen H (1997) A new generation of algorithms for computerized threshold perimetry, SITA. Acta Ophthalmol Scand 75:368–375

    Article  PubMed  CAS  Google Scholar 

  5. Bland JM, Altman DG (1995) Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet 346:1085–1087, 21;346:1085–1087

    Article  PubMed  CAS  Google Scholar 

  6. Fitzke FW, Crabb DP, McNaught AI, Edgar DF, Hitchings RA (1995) Image processing of computerised visual field data. Br J Ophthalmol 79:207–212

    PubMed  CAS  Google Scholar 

  7. Fitzke FW, Hitchings RA, Poinoosawmy D, McNaught AI, Crabb DP (1996) Analysis of visual field progression in glaucoma. Br J Ophthalmol 80:40–48

    PubMed  CAS  Google Scholar 

  8. Flammer J, Drance SM, Zulauf M (1984) Differential light threshold. Short-and long-term fluctuation in patients with glaucoma, normal controls, and patients with suspected glaucoma. Arch Ophthalmol 102:704–706

    PubMed  CAS  Google Scholar 

  9. Flanagan J, Wild J, Trope G (1983) Evaluation of FASTPAC, a new strategy for thresholds estimation with the Humphrey field analyzer, in a glaucomatous population. Ophthalmology 100:949–954

    Google Scholar 

  10. Funkhouser A, Fankhauser F, Hirsbrunner H (1989) A comparison of three methods for abbreviating G1 examinations. Jpn J Ophthalmol 33:288–294

    PubMed  CAS  Google Scholar 

  11. Funkhouser A, Fankhauser F, Hirsbrunner H (1989) A comparison of eight test location configurations for estimating G1 mean defect values. Jpn J Ophthalmol 33:295–299

    PubMed  CAS  Google Scholar 

  12. Gardiner SK, Crabb DP, Fitzke FW, Hitchings RA (2004) Reducing noise in suspected glaucomatous visual fields by using a new spatial filter. Vision Res 44:839–848

    Article  PubMed  Google Scholar 

  13. Gonzalez de la Rosa M, Abreu Reyes J, Gonzalez Sierra M (1990) Rapid assessment of the visual field in glaucoma using an analysis based on multiple correlations. Graefe’s Arch Clin Exp Ophthalmol 228:387–391

    Article  CAS  Google Scholar 

  14. Gonzalez de la Rosa M, Pareja A (1997) Influence of the ‘‘fatigue effect’’ on the mean deviation measurement in perimetry. Eur J Ophthalmol 7:29–34

    PubMed  CAS  Google Scholar 

  15. Gonzalez de la Rosa M, Martinez A, Sanchez M, Mesa C, Cordoves L, Losada MJ (1997) Accuracy of the Tendency Oriented Perimetry (TOP) in the Octopus 1-2-3 Perimeter. In: Wall M, Wild J (eds) Perimetry update 1996/1997. Kugler, Amsterdam, pp 119–123

    Google Scholar 

  16. Gonzalez de la Rosa M, Gonzalez Hernandez M, Abraldes M, Azuara-Blanco A (2002) Quantification of inter-point topographic correlations of threshold values in glaucomatous visual fields. J Glaucoma 11:30–34

    Article  PubMed  Google Scholar 

  17. Gonzalez de la Rosa M, Gonzalez-Hernandez M, Garcia-Feijoo J, Morales J, Azuara-Blanco A (2006) Diagnostic accuracy and reproducibility of Tendency Oriented Perimetry in glaucoma. Eur J Ophthalmol 16:259–267

    PubMed  CAS  Google Scholar 

  18. Gonzalez-Hernandez M, Morales J, Azuara-Blanco A, Garcia Sanchez J, Gonzalez de la Rosa M (2005) Comparison of diagnostic ability between a fast strategy, Tendency Oriented Perimetry (TOP) and the standard bracketing strategy. Ophthalmologica 219:373–378

    Article  PubMed  CAS  Google Scholar 

  19. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA et al (2002) The ocular hypertension treatment study II. Arch Ophthalmol 120:714–720

    PubMed  Google Scholar 

  20. Heijl A, Drance SM (1983) Changes in differential threshold in patients with glaucoma during prolonged perimetry. Br J Ophthalmol 67:512–516

    PubMed  CAS  Google Scholar 

  21. Heijl A, Lindgren G, Olsson J (1987) A package for the statistical analysis of visual fields. Doc Ophthalmol Proc Ser 49:153–168

    Google Scholar 

  22. Johnson CA, Adams CW, Lewis RA (1988) Fatigue effects in automated perimetry. Appl Optics 27:1030–1037

    Article  Google Scholar 

  23. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP et al. (2002) The ocular hypertension treatment study I. Arch Ophthalmol 120:701–713

    PubMed  Google Scholar 

  24. Krakau C (1989) Visual field testing with reduced sets of test points. A computerised analysis. Doc Ophthalmol 73:71–80

    Article  PubMed  CAS  Google Scholar 

  25. Maeda H, Nakaura M, Negi A (2000) New perimetric threshold test algorithm with dynamic strategy and tendency oriented perimetry (TOP) in glaucomatous eyes. Eye 5:747–751

    Google Scholar 

  26. Morales J, Weitzman M, Gonzalez de la Rosa M (2000) A preliminary comparison between Tendency Oriented Perimetry (TOP) and traditional threshold perimetry. Ophthalmology 107:134–142

    Article  PubMed  CAS  Google Scholar 

  27. Sturmer J, Gloor B, Tobler HJ (1984) Wie sehen Glaukomgesichtsfelder wirklich aus? Klin Monatsbl Augenheilkd 184:390–393

    PubMed  CAS  Google Scholar 

  28. Vedy J, Queguiner P, Mouly A, Lagrange C, Riviere B (1990) Le score perimetrique dans l’aire de Bjerrum. Ophtalmologie 4:295–297

    PubMed  CAS  Google Scholar 

  29. Zulauf M, Fehlmann P, Flammer J (1995) Efficiency of the standard Octopus bracketing procedure compared to that of the ‘‘Dynamic strategy’’ of Weber. In: Wall M, Wild J (eds) Perimetry update 1994/1995. Kugler, New York, pp 263–264

    Google Scholar 

Download references

Acknowledgments

Presented at the 17th International Perimetric Society Visual Field & Imaging Symposium, Portland, 6-9 July 2006.

Supported in part by FEDER founding and Fondo de Investigación Sanitaria (FIS). Instituto Carlos III. Ministerio de Sanidad y Consumo. Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Gonzalez de la Rosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez de la Rosa, M., Gonzalez-Hernandez, M., Diaz Aleman, T. et al. Stabilization and comparison of TOP and Bracketing perimetric strategies using a threshold spatial filter. Graefes Arch Clin Exp Ophthalmol 245, 1303–1309 (2007). https://doi.org/10.1007/s00417-007-0538-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-007-0538-0

Keywords

Navigation