Skip to main content

Advertisement

Log in

Keratocyte density in the retroablation area after LASEK for the correction of myopia

  • Short Communication
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

During excimer laser photoablation keratocyte cell death is induced in the retroablation area. Afterwards this area is repopulated by keratocyte mitosis and migration from the adjacent stroma. The aim of this study was to investigate keratocyte density in the retroablation area and in the posterior stroma during the first year after LASEK for the correction of myopia.

Methods

In a prospective study LASEK surgery was performed in 17 eyes of 10 consecutive patients for the correction of myopia (−2.25 D to −9.0 D, mean −5.0 D). Confocal microscopy (Nidek Confoscan 2) was performed before surgery and 1 month, 3 months, 6 months and 12 months after LASEK. Keratocyte density was assessed in the anterior retroablation area at depths of 5 μm and 25 μm and in the posterior stroma at distances of 5 μm and 100 μm from the corneal endothelium and compared with the corresponding area before surgery.

Results

Keratocyte density was statistically significant reduced in the retroablation area at all timepoints after LASEK. At a depth of 5 μm, cell densities were decreased by 64%, 47%, 43%, and 28% at 1 month, 3 months, 6 months and 12 months after LASEK compared with preoperative values. At a depth of 25 μm, cell densities were decreased by 51%, 32%, 28%, and 18% at 1 month, 3 months, 6 months and 12 months after LASEK compared with preoperative values. In the posterior stroma no significant change in keratocyte density was observed at any time after LASEK.

Conclusions

Keratocyte density in the anterior retroablation area recovers during the first year after LASEK for the correction of myopia, but does not go back to preoperative values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Balestrazzi E, De Molfetta V, Spadea L, Vinciguerra P, Palmieri G, Santeusanio G, Spagnoli L (1995) Histological, immunohistochemical, and ultrastructural findings in human corneas after photorefractive keratectomy.J Refract Surg 11(3):181–187

    PubMed  CAS  Google Scholar 

  2. Camellin M (1999) LASEK may offer the advantages of both LASIK and PRK. Ocul Surg News Int Edn 3:14–15

    Google Scholar 

  3. Campos M, Raman S, Lee M, McDonnell PJ (1994) Keratocyte loss after different methods of de-epithelialization. Ophthalmology 101(5):890–894

    PubMed  CAS  Google Scholar 

  4. Dawson DG, Edelhauser HF, Grossniklaus H (2005) Long-term histopathologic findings in human corneal wounds after refractive surgical procedures. Am J Ophthalmol 139:168–178

    Article  PubMed  Google Scholar 

  5. Erie JC, Nau CB, McLaren JW, Hodge DO, Bourne WM (2004) Long-term keratocyte deficits in the corneal stroma after LASIK. Ophthalmology 111(7):1356–1361

    Article  PubMed  Google Scholar 

  6. Erie JC, Patel AV, McLaren JW, Nau CB, Hodge DO, Bourne WM (2003) Keratocyte density in the human cornea after photorefractive keratectomy. Arch Ophthalmol 121:770–776

    Article  PubMed  Google Scholar 

  7. Frueh BE, Cadez R, Bonke M (1998) In vivo confocal microscopy after photorefractive keratectomy in humans. A prospective, long-term study. Arch Ophthalmol 116(11):1425–1431

    PubMed  CAS  Google Scholar 

  8. Freund DE, McCally RL, Farrell RA, Cistol SM, L’Hernault NL, Edelhauser HF (1995) Ultrastructure in anterior and posterior stroma of perfused human and rabbit corneas. Relation to transparency. Invest Ophthalmol Vis Sci 36:1508–1523

    PubMed  CAS  Google Scholar 

  9. Gierek-Ciaciura S, Mrukwa-Kominek E, Rotika-Wala I, Wygedowska -Promienska D (2003) Structural changes in the cornea after LASIK during the early postoperative period. Klin Oczna 102(5):335–338

    Google Scholar 

  10. Helena MC, Baerveldt F, Kim WJ, Wilson SE (1998) Keratocyte apoptosis after corneal surgery. Invest Ophthalmol Vis Sci 39(2):276–283

    PubMed  CAS  Google Scholar 

  11. Kermani O, Lubatschowski H (1991) Structure and dynamics of laser-induced acoustic shockwaves in 193 nm excimer laser photoablation of the cornea. Fortschr Ophthalmol 88:748–753

    PubMed  CAS  Google Scholar 

  12. Laube T, Wissing S, Theiss C, Brockmann C, Steuhl KP, Meller D (2004) Decreased keratocyte death after laser-assisted subepithelial keratectomy and photorefractive keratectomy in rabbits. J Cataract Refract Surg 30:1998–2004

    Article  PubMed  Google Scholar 

  13. Lohmann CP, Winkler von Mohrenfels C, Gabler B, Herrmann W, Müller M (2002) Excimer Laser Subepitheliale Ablation (ELSA) bzw. Laser Subepitheliale Keratomileusis (LASEK)—ein neuartiges refraktiv- chirurgisches Verfahren zur Myopiekorrektur. Operationstechnik und erste klinische Ergebnisse an 24 Augen und nach 3 Monaten. Klin Monatsbl Augenheilkd 219:26–32

    Article  PubMed  Google Scholar 

  14. Lubatschowski H, Kermani O, Otten C, Haller A, Schmiedt KC, Ertmer W (1994) ArF-excimer laser-induced secondary radiation in photoablation of biological tissue. Lasers Surg Med 14:168–177

    Article  PubMed  CAS  Google Scholar 

  15. McLaren JW, Nau CB, Kitzmann AS, Bourne WM (2005) Keratocyte density: comparison of two confocal microscopes. Eye Contact Lens 31(1):28–33

    Article  PubMed  Google Scholar 

  16. Marchant JK, Zhang G, Birk DE (2002) Association of type XII collagen with regions of increased stability and keratocyte density in the cornea. Exp Eye Res 75:683–694

    Article  PubMed  CAS  Google Scholar 

  17. Mohan RR, Hutcheon AEK, Choi R, Hong J, Lee J, Mohan RR, Ambrosio R, Zieske JD, Wilson SE (2003) Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK. Exp Eye Res 76:71–87

    Article  PubMed  CAS  Google Scholar 

  18. Moller-Pedersen T, Li HF, Petroll WM, Cavanagh HD, Jester JV (1998) Confocal microscopic characterization of wound repair after photorefractive keratectomy. Invest Ophthalmol Vis Sci 39(3):487–501

    PubMed  CAS  Google Scholar 

  19. Nakayasu K (1998) Stromal changes following removal of epithelium in rat cornea. Jpn J Ophthalmol 32(2):113–125

    Google Scholar 

  20. Patel SV, McLaren JW, Hodge DO, Bourne WM (2001) Normal human keratocyte density and corneal thickness measurement by using confocal microscopy in vivo. Invest Ophthalmol Vis Sci 42:333–339

    PubMed  CAS  Google Scholar 

  21. Shimmura S, Masumizu T, Nakai Y, Urayama K, Shimazaki J, Bissen-Miyajima H, Kohno M, Tsubota K (1999) Excimer laser-induced hydroxyl radical formation and keratocyte death in vitro. Invest Ophthalmol Vis Sci 40:1245–1249

    PubMed  CAS  Google Scholar 

  22. Wilson SE, He YG, Weng J, Li Q, McDowell AW, Vital M, Chwang EL (1996) Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Exp Eye Res 62:325–337

    Article  PubMed  CAS  Google Scholar 

  23. Zieske JD, Guimaraes SR, Hutcheon AE (2001) Kinetics of keratocyte proliferation in response to epithelial debridement. Exp Eye Res 72:33–39

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Artur Herrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, W.A., Muecke, M., Koller, M. et al. Keratocyte density in the retroablation area after LASEK for the correction of myopia. Graefe's Arch Clin Exp Ophthalmol 245, 426–430 (2007). https://doi.org/10.1007/s00417-006-0344-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-006-0344-0

Keywords

Navigation