Skip to main content

Genotype-phenotype correlation and longitudinal course in ten families with Best vitelliform macular dystrophy

Abstract

Aim

Longitudinal course and genotype-phenotype correlation in patients and carriers with heterozygous mutations in hBEST1 (bestrophin).

Methods

Thirteen patients and seven possible carriers were characterised by mutation analysis with SSCPA and direct sequencing, clinical examination and fundus autofluorescence (AF). Electrophysiology (EOG and mfERG) and optical coherence tomography (OCT) were additionally performed whenever possible.

Results

We identified seven different heterozygous mutations in ten unrelated families with Best disease. I296del was the most frequent mutation. Five of nine individuals with I295del and two of three with N99K were asymptomatic carriers. One patient with I295del mutation had funduscopically unilateral Best disease. In three children (all with I295del), EOG initially showed a clearly present light peak that deteriorated during 5 years of follow-up in two of them. Increased AF corresponded well to funduscopically visible lesions. During 3–6 years of follow-up, the lesion area did not change significantly, but there were obvious changes in the inner structure of the lesion.

Conclusion

In the present series I295del, the most frequent mutation in our study, and N99K showed reduced penetrance. EOG was normal in young patients even if prime signs were visible. The lesion area did not depend on the mutation and did not correlate with VA. Lower VA was associated with a more irregular AF pattern due to scarring or haemorrhage. Our results indicate a disease causing effect that is cumulative over time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Baca W, Fishman GA, Alexander KR, Glenn AM (1994) Dark adaptation in patients with Best vitelliform macular dystrophy. Br J Ophthalmol 78:430–432

    PubMed  CAS  Google Scholar 

  2. Bard LA, Cross HE (1975) Genetic counseling of families with Best macular dystrophy. Trans Am Acad Ophthalmol Otolaryngol 79:OP865–OP873

    CAS  Google Scholar 

  3. Best F (1905) Über eine hereditäre Maculaaffektion. Z Augenheik 13:199–212

    Google Scholar 

  4. Birndorf LA, Dawson WW (1973) A normal electrooculogram in a patient with a typical vitelliform macular lesion. Invest Ophthalmol 12:830–833

    PubMed  CAS  Google Scholar 

  5. Chung JE, Spaide RF (2004) Fundus autofluorescence and vitelliform macular dystrophy. Arch Ophthalmol 122:1078–1079

    Article  PubMed  Google Scholar 

  6. Clemett R (1991) Vitelliform dystrophy: long-term observations on New Zealand pedigrees. Aust N Z J Ophthalmol 19:221–227

    PubMed  CAS  Google Scholar 

  7. Cross HE, Bard L (1974) Electro-oculography in Best’s macular dystrophy. Am J Ophthalmol 77:46–50

    PubMed  CAS  Google Scholar 

  8. Deutman AF (1989) Macular dystrophies. In: Schachat AP, Murphy RP, Patz A (eds) II. Medical retina. Mosby, St Louis pp 243–300

    Google Scholar 

  9. Fishman GA, Baca W, Alexander KR, Derlacki DJ, Glenn AM, Viana M (1993) Visual acuity in patients with best vitelliform macular dystrophy. Ophthalmology 100:1665–1670

    PubMed  CAS  Google Scholar 

  10. Francois J, De Rouck A, Fernandez-Sasso D (1967) Electro-oculography in vitelliform degeneration of the macula. Arch Ophthalmol 77:726–733

    PubMed  CAS  Google Scholar 

  11. Frangieh GT, Green WR, Fine SL (1982) A histopathologic study of Best’s macular dystrophy. Arch Ophthalmol 100:1115–1121

    PubMed  CAS  Google Scholar 

  12. Gass JDM (1997) Heredodystrophic disorders affecting the pigment epithelium and retina. In: Steroscopic atlas of macular disease—diagnosis and treatment) Mosby, St Louis pp 303–436

  13. Gerth C, Andrassi-Darida M, Bock M, Preising MN, Weber BH, Lorenz B (2002) Phenotypes of 16 Stargardt macular dystrophy/fundus flavimaculatus patients with known ABCA4 mutations and evaluation of genotype-phenotype correlation. Graefe's Arch Clin Exp Ophthalmol 240:628–638

    Article  Google Scholar 

  14. Hood DC, Frishman LJ, Saszik S, Viswanathan S (2002) Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci 43:1673–1685

    PubMed  Google Scholar 

  15. Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:1178–1181

    Article  PubMed  CAS  Google Scholar 

  16. Jarc-Vidmar M, Kraut A, Hawlina M (2003) Fundus autofluorescence imaging in Best’s vitelliform dystrophy. Klin Monatsbl Augenheilkd 220:861–867

    Article  PubMed  Google Scholar 

  17. Lorenz B, Wabbels B, Wegscheider E, Hamel CP, Drexler W, Preising MN (2004) Lack of fundus autofluorescence to 488 nanometers from childhood on in patients with early-onset severe retinal dystrophy associated with mutations in RPE65. Ophthalmology 111:1585–1594

    Article  PubMed  Google Scholar 

  18. Marmor MF (1998) Standardization notice: EOG standard reapproved. Electro-oculogram. Doc Ophthalmol 95:91–92

    Article  PubMed  CAS  Google Scholar 

  19. Marmor MF, Zrenner E (1993) Standard for clinical electro-oculography. International Society for Clinical Electrophysiology of Vision. Doc Ophthalmol 85:115–124

    Article  PubMed  CAS  Google Scholar 

  20. Marmor MF, Zrenner E (1998) Standard for clinical electroretinography (1999 update). International Society for Clinical Electrophysiology of Vision. Doc Ophthalmol 97:143–156

    Article  PubMed  Google Scholar 

  21. Marmor MF, Zrenner E (1999) Standard for clinical electroretinography (1998 update). Doc Ophthalmol 97:143–156

    Article  CAS  Google Scholar 

  22. Marmorstein AD, Marmorstein LY, Rayborn M, Wang X, Hollyfield JG, Petrukhin K (2000) Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci USA 97:12758–12763

    Article  PubMed  CAS  Google Scholar 

  23. Marquardt A, Stöhr H, Passmore LA, Kramer F, Rivera A, Weber BH (1998) Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best’s disease). Hum Mol Genet 7:1517–1525

    Article  PubMed  CAS  Google Scholar 

  24. Miller SA (1978) Fluorescence in Best’s vitelliform dystrophy, lipofuscin, and fundus flavimaculatus. Br J Ophthalmol 62:256–260

    PubMed  CAS  Google Scholar 

  25. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  PubMed  CAS  Google Scholar 

  26. Mohler CW, Fine SL (1981) Long-term evaluation of patients with Best’s vitelliform dystrophy. Ophthalmology 88:688–692

    PubMed  CAS  Google Scholar 

  27. O’Gorman S, Flaherty WA, Fishman GA, Berson EL (1988) Histopathologic findings in Best’s vitelliform macular dystrophy. Arch Ophthalmol 106:1261–1268

    PubMed  CAS  Google Scholar 

  28. Petrukhin K, Koisti MJ, Bakall B et al (1998) Identification of the gene responsible for Best macular dystrophy. Nat Genet 19:241–247

    Article  PubMed  CAS  Google Scholar 

  29. Pianta MJ, Aleman TS, Cideciyan AV et al (2003) In vivo micropathology of Best macular dystrophy with optical coherence tomography. Exp Eye Res 76:203–211

    Article  PubMed  CAS  Google Scholar 

  30. Pollack K, Kreuz FR, Pillunat LE (2005) Morbus Best mit normalem EOG-Fallvorstellung einer familiären Makuladystrophie. Ophthalmologe 102:891–894

    Article  PubMed  CAS  Google Scholar 

  31. Puliafito CA, Hee MR, Schuman JS, Fujimoto JG (1995) Optical coherence tomography of ocular disease. Slack Inc., Thorofare, New Jersey

    Google Scholar 

  32. Qu Z, Wei RW, Mann W, Hartzell HC (2003) Two bestrophins cloned from Xenopus laevis oocytes express Ca(2+)-activated Cl(−) currents. J Biol Chem 278:49563–49572

    Article  PubMed  CAS  Google Scholar 

  33. Seddon JM, Sharma S, Chong S, Hutchinson A, Allikmets R, Adelman RA (2003) Phenotype and genotype correlations in two Best families. Ophthalmology 110:1724–1731

    Article  PubMed  CAS  Google Scholar 

  34. Strauss O, Rosenthal R (2005) Funktion des Bestrophins. Ophthalmologe 102:122–126

    Article  PubMed  CAS  Google Scholar 

  35. Sun H, Tsunenari T, Yau KW, Nathans J (2002) The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci USA 99:4008–4013

    Article  PubMed  CAS  Google Scholar 

  36. Tsunenari T, Sun H, Williams J et al (2003) Structure-function analysis of the bestrophin family of anion channels. J Biol Chem 278:41114–41125

    Article  PubMed  CAS  Google Scholar 

  37. von Rückmann A, Fitzke FW, Bird AC (1997) In vivo fundus autofluorescence in macular dystrophies. Arch Ophthalmol 115:609–615

    PubMed  Google Scholar 

  38. Weingeist TA, Kobrin JL, Watzke RC (1982) Histopathology of Best’s macular dystrophy. Arch Ophthalmol 100:1108–1114

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Deutsche Forschungsgemeinschaft (DFG Lo 457/3, DFG Lo457/5). The authors would like to thank all patients and their families for participating in the study, Christoph Friedburg, MD for fruitful discussions on electrophysiological recordings, Renate Foeckler for excellent technical assistance, Martin Rosner, Roman Miedl and Günther Schuch for OCT, fundus and AF imaging and Birgit Langer and Ulla Biendl for electrophysiological recordings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Preising.

Additional information

B. Wabbels and M. N. Preising contributed equally in this work.

Proprietary Interest Statement: The authors do not have any financial interest in the methods or equipment reported in this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wabbels, B., Preising, M.N., Kretschmann, U. et al. Genotype-phenotype correlation and longitudinal course in ten families with Best vitelliform macular dystrophy. Graefe's Arch Clin Exp Ophthalmo 244, 1453–1466 (2006). https://doi.org/10.1007/s00417-006-0286-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-006-0286-6

Keywords

  • Bestrophin
  • Juvenile vitelliform macular dystrophy
  • Longitudinal course
  • Optical coherence tomography
  • Electrooculogram
  • Fundus autofluorescence