Skip to main content

Advertisement

Log in

Evaluation of biometric methods for measuring the anterior chamber depth in the non-contact mode

  • Clinical Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

High-resolution biometry of the anterior ocular segment is now becoming more and more important against a background of refractive surgery and the evaluation of potentially accommodative lens replacement materials. The aim of this study was a systematic investigation of the currently available non-contact methods for measuring the anterior chamber depth (ACD).

Methods

The ACDs of 50 phakic eyes of 27 patients aged between 19 and 59 years were measured with the IOL-Master (Zeiss), the AC-Master (Zeiss), the Pentacam (Oculus) and slit-lamp pachymetry by Jaeger (Haag-Streit).

Results

The median anterior chamber depth in the investigated eyes was 3.63 mm for the IOL-Master (minimum 2.88 mm, maximum 4.22 mm), 3.802 mm for the AC-Master (2.816 mm−4.373 mm), 3.915 mm for the Pentacam (minimum 2.994 mm, maximum 4.614 mm) and 3.75 mm for Jaeger (2.887 mm−4.29 mm). With a probability of error of α=0.05 there were no significant differences concerning the ACD between the methods of Jaeger and AC-Master, Jaeger and IOL-Master, or Pentacam and AC-Master (Wilcoxon and Wilcox). The intra-individual variability was ±5.4 μm for AC-Master, ±12.7 μm for Pentacam, ±24.5 μm for IOL-Master and ±41.2 μm for Jaeger. The maximum method-dependent difference in ACD determination was 285 μm.

Conclusions

All the methods allow non-contact biometry, but the results might differ due to measuring principles inherent to the system, experience of the examiner and compliance of the patient. Partial coherence interferometry with the AC-Master offers the advantage of measurement exactly along the optical axis with the highest reproducibility and patient compliance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Auffarth GU, Martin M, Fuchs HA, Rabsilber TM, Becker KA, Schmack I (2002) Validity of anterior chamber depth measurements for the evaluation of accommodation after implantation of an accommodative Humanoptics 1CU intraocular lens. Ophthalmologe 99:815–819 (in German)

    Article  PubMed  CAS  Google Scholar 

  2. Augustin AJ (2001) Augenheilkunde, 2nd edn, Springer, p 1062

  3. Bland JM, Altman DG (1986) Statistical method for assessing agreement between two methods of clinical measurement. Lancet i:307–310

    Google Scholar 

  4. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160

    Article  PubMed  CAS  Google Scholar 

  5. Drexler W, Baumgartner A, Findl O, Hitzenberger CK, Sattmann H, Fercher AF (1997) Submicrometer precision biometry of the anterior segment of the human eye. Invest Ophthalmol Vis Sci 38:1304–1313

    PubMed  CAS  Google Scholar 

  6. Drexler W, Baumgartner A, Findl O, Hitzenberger CK, Fercher AF (1997) Biometric investigation of changes in the anterior eye segment during accommodation. Vision Res 37:2789–2800

    Article  PubMed  CAS  Google Scholar 

  7. Fercher AF, Mengedoht K, Werner W (1988) Eye-length measurement by interferometry with partially coherent light. Opt Lett 13:186–188

    Article  CAS  PubMed  Google Scholar 

  8. Findl O, Drexler W, Menapace R, Hitzenberger CK, Fercher AF (1998) High precision biometry of pseudophakic eyes using partial coherence interferometry. J Cataract Refract Surg 24:1087–1093

    PubMed  CAS  Google Scholar 

  9. Findl O, Drexler W, Menapace R, Bobr B, Bittermann S, Vass C, Rainer G, Hitzenberger CK, Fercher AF (1998) Accurate determination of effective lens position and lens–capsular distance with 4 intraocular lenses. J Cataract Refract Surg 24:1094–1098

    PubMed  CAS  Google Scholar 

  10. Findl O, Kriechbaum K, Menapace R, Koeppl C, Sacu S, Wirtitsch M, Buehl W, Drexler W (2004) Laser interferometric assessment of pilocarpine-induced movement of an accommodating intraocular lens: a randomized trial. Ophthalmology 111:1515–1521

    Article  PubMed  Google Scholar 

  11. Koranyi G, Lydahl E, Norrby S, Taube M (2002) Anterior chamber depth measurement: A-scan versus optical methods. J Cataract Refract Surg 28:243–247

    Article  PubMed  Google Scholar 

  12. Kriechbaum K, Findl O, Kiss B, Sacu S, Petternel V, Drexler W (2003) Comparison of anterior chamber depth measurement methods in phakic and pseudophakic eyes. J Cataract Surg 29:89–94

    Article  Google Scholar 

  13. Lam AK, Chan R, Pang PC (2001) The repeatability and accuracy of axial length and anterior chamber depth measurements from the IOLMaster. Ophthalmic Physiol Opt. 21:477–483

    Article  PubMed  CAS  Google Scholar 

  14. Langenbucher A, Huber S, Nguyen NX, Seitz B, Gusek-Schneider GC, Küchle M (2003) Measurement of accommodation after implantation of an accommodating posterior chamber intraocular lens. J Cataract Refract Surg 29:677–685

    Article  PubMed  Google Scholar 

  15. Leaming DV (2001) Practice styles and preferences of ASCRS members—2000 survey. J Cataract Refract Surg 27:948–955

    Article  PubMed  CAS  Google Scholar 

  16. Vetrugno M, Cardascia N, Cardia L (2000) Anterior chamber depth measured by two methods in myopic and hyperopic phakic IOL implant. Br J Ophthalmol 84:1113–1116

    Article  PubMed  CAS  Google Scholar 

  17. Vogel A, Dick HB, Krummenauer F (2001) Reproducibility of optical biometry using partial coherence interferometry; intraobserver and interobserver reliability. J Cataract Refract Surg 27:1961–1968

    Article  PubMed  CAS  Google Scholar 

  18. Vilupuru AS, Glasser A (2003) Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry. Optom Vis Sci 80:383–394

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Stachs.

Additional information

None of the authors has a financial or proprietary interest in any material or method mentioned.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meinhardt, B., Stachs, O., Stave, J. et al. Evaluation of biometric methods for measuring the anterior chamber depth in the non-contact mode. Graefe's Arch Clin Exp Ophthalmo 244, 559–564 (2006). https://doi.org/10.1007/s00417-005-0103-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-005-0103-7

Keywords

Navigation