Skip to main content
Log in

Changes in the lens epithelium with respect to cataractogenesis—light microscopic and Scheimpflug densitometric analysis of the cataractous and the clear lens of diabetics and non-diabetics

  • Clinical Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

We compared the human lens documented, using the Scheimpflug densitometry, with the light microscopic changes in the epithelium of the anterior central lens in patients with age-related cataract and diabetes mellitus type II and verified the findings on the control tissue of the clear eye lens. We wanted to determine the relevance of the lens epithelium in cataract formation in type II diabetics compared to non-diabetics.

Materials and methods

One hundred fifty central lens capsules (138 cataract and 12 clear lenses) of type II diabetics (n=77, 45 female, 32 male) and non-diabetics (n=73, 41 female, 32 male) were examined by light microscope, regarding defined histomorphological parameters. Further criteria were duration of diabetes, diabetic retinopathy, cataract (PENTACAM, scheimpflug densitometric definition), protein content in the aqueous humour (laser flare meter 500 KOWA, tyndallometry), different blood parameters and glucose content in the aqueous humour.

Results

The mean cell density in the cataractous lens in type II diabetics was 3,951±528 cells/mm2 and in non-diabetics 4,329±580 cells/mm2 (P<0.001); in the clear lens it corresponded to 4,593±409 cells/mm2 (type II diabetics) and 4,894±333 cells/mm2 (non-diabetics, P=0.207). The cell density of the cataractous lens in type II diabetics (P=0.005) and in non-diabetics (P=0.035) is smaller than that of the clear lens. The cell area of the lens epithelium in the cataractous diabetic lens is larger (P<0.001) and the nucleus-plasma ratio is lower (P<0.001) than those of the clear non-diabetic lens. The increase in damage of the lens epithelium correlates with the decrease of cell density (P< 0.001), the increase of nucleus area and volume (P< 0.001), and the decrease of nucleus-plasma ratio (P< 0.001). Risk factors for the decrease of cell density are advanced age (P=0.015), type II diabetes (P=0.01), increase in glucose content in the aqueous humour (P=0.014), increase in blood sugar (P=0.003) and increase in glycosylated haemoglobin (P=0.039).

Conclusions

The lens epithelium is primarily damaged in type II diabetics who develop age-related cataract. This might play an important role in cataract formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Achim B, Zefel P (2002) SPSS 10: Die Kunst der Informationsverarbeitung. Diasoft, Moskau S-Petersb Kiew, p 200

    Google Scholar 

  2. Augustin AJ, Dick HB, Winkgen A, Schmidt-Erfurth U (2001) Ursache und Prävention oxidativer Schäden des Auges. Ophthalmologe 98:776–797

    Article  PubMed  CAS  Google Scholar 

  3. Bettelheim FA, Li L, Zeng FF (1998) Do changes in the hydratation of the diabetic human lens precede cataract formation? Res Commun Pathol Pharmacol 1:3–14

    CAS  Google Scholar 

  4. Boscia F, Grattgliano I, Vendemiale G et al (2000) Protein oxidation and lens opacity in humans. Invest Ophthalmol Vis Sci 41:2461–2465

    PubMed  CAS  Google Scholar 

  5. Brian G, Taylor H (2001) Cataract blindness—challenges for the 21st century. Bull World Health Organ 79:249–256

    PubMed  CAS  Google Scholar 

  6. Datiles M, Fukui H (1989) Cataract prevention in diabetic Octodon degus. Curr Eye Res 8:233–237

    Article  PubMed  Google Scholar 

  7. Donma O, Yorulmaz E, Pekel H et al (2002) Blood and lens lipid peroxidation and antioxidant status in normal individuals, senile and diabetic cataractous patients. Curr Eye Res 25(1):9–16

    Article  PubMed  Google Scholar 

  8. Fargerholm PP, Philipson BT (1981) Human lens epithelium in normal and cataractous lens. Invest Ophthalmol Vis Sci 21:408–414

    PubMed  Google Scholar 

  9. Franke S, Stein F, Dawczynski J, Blum M et al (2003) Advanced glycation end-products in anterior chamber aqueous of cataractous patients. J Cataract Refract Surg 29:329–335

    Article  PubMed  Google Scholar 

  10. Guggenmoos-Holzmann J, Engel B, Henke V, Naumann GOH (1989) Cell density of human lens epithelium in women higher than in men. Invest Ophthalmol Vis Sci 30:330–332

    PubMed  CAS  Google Scholar 

  11. Harding JJ (1999) Can cataract be prevented? Eye 13:454–456

    PubMed  Google Scholar 

  12. Haß C, Kohlmann H, Lommatzsh PK (1995) Morphologische Veränderungen des Linsenepithels bei Patienten mit altersbedingter Katarakt, Strahlen- und Steroidkatarakt und Katarakt nach Contusio bulbi. Ophthalmologe 92:741–744

    PubMed  Google Scholar 

  13. Hockwin O (1995) Cataract classification. Doc Ophthalmol 88:263–275

    Article  CAS  Google Scholar 

  14. Hockwin O (1997) Multifactorial pathogenesis of “senile cataract.” Nova Acta Leopoldina 75:37–44

    Google Scholar 

  15. Karim AK, Jakob TJ, Thompson GM (1987) The human anterior lens capsule: cell density, morphology and mitotic index in normal and cataractous lenses. Exp Eye Res 1:865–874

    Article  Google Scholar 

  16. Kinoshita JH, Kador P, Datiles M (1981) Aldose reductase in diabetic cataract. JAMA 246:259–261

    Article  Google Scholar 

  17. Maltzev EV, Pavluchenko KP (2002) Biologic peculiarities and diseases of the lens. Astroprint, Odessa, p 448

    Google Scholar 

  18. Martinez A, Abrey J, Losada M (1998) Histomorphometry of the lens capsule and epithelium. Ophthal Res 1:30

    Google Scholar 

  19. Michael R (2000) Development and repair of cataract induced by ultraviolet radiation. Ophthalmic Res 32:1–44

    Article  PubMed  Google Scholar 

  20. Moriarty AP, Spalton DJ, Moriarty BJ et al (1994) Studies of the blood-aqueous barrier in diabetes mellitus. Am J Ophthal 117:768–771

    PubMed  CAS  Google Scholar 

  21. Nishi O, Saitoh J, Hitani H (1991) Morphometry of lens epithelial cells of human cataract. Eur J Implant Ref Surg 3:245–248

    Google Scholar 

  22. Obrosova I, Fattalach L (2000) Relationship between aldose-reductase and oxidative stress in diabetic lens. Ophthalmol Res 32(2):139

    Google Scholar 

  23. Palkovitz M, Fischer J (1968) Karyometric investigation. Ak Kiado, Budapest, pp 31–166

  24. Putschkowskaja NO (1995) Aktualni pitannja patogenesu, diagnostiki ta likuvannja senilnoji katarakti. Z AMW der Ukraine 1(2):245–254

    Google Scholar 

  25. Robinson WG, Houlder N, Kinohita JH (1990) The role of lens epithelium in sugar cataract formation. Exp Eye Res 50:641–646

    Article  PubMed  Google Scholar 

  26. Saitoh J, Nishi O, Hitahi H (1990) Cell density and hexagonality of lens epithelium in human cataracts. Nippon Ganka Gakkai Zasshi 94:176–180

    PubMed  CAS  Google Scholar 

  27. Sargon MF, Celik HH, Orhan M (1997) Electron microscopy of the senile changes in lens epithelium. Okajimas Folia Anat Jpn 74(2–3):75–80

    PubMed  CAS  Google Scholar 

  28. Straatsma BR, Lightfoot DO, Barke RM, Horwith J (1991) Lens capsule and epithelium in age-related cataract. Am J Ophthalmol 112:283–296

    PubMed  CAS  Google Scholar 

  29. Struck HG (1997) Clinical aspects of cataracts. Nova Acta Leopoldina 299:9–17

    Google Scholar 

  30. Struck HG, Hammer U, Seydewitz V (1997) Einfluss des Diabetes mellitus auf das vordere zentrale Linsenepithel bei Kataraktpatienten. Ophthalmologe 94:327–331

    Article  PubMed  CAS  Google Scholar 

  31. Struck HG, Heider C, Lautenschläger CH (2000) Veränderungen des Linsenepithels bei Diabetikern und Nichtdiabetikern mit verschiedenen Trübungsformen einer altersassoziierten Katarakt. Klin Monatsbl Augenheilkd 216:204–209

    Article  PubMed  CAS  Google Scholar 

  32. Thylefors B (1999) Cataract as a global health problem. Ophthalmic Res 31:43

    Google Scholar 

  33. Tseng S-H, Yen J-S, Chien H-L (1994) Lens epithelium in senile cataract. J Formos Med Assoc 93:93–98

    PubMed  CAS  Google Scholar 

  34. Vasavada AR, Cherian M, Yadav S, Raval UM (1991) Lens epithelial cell density and histomorphological study in cataractous lenses. J Cataract Refract Surg 17:798–804

    PubMed  CAS  Google Scholar 

  35. Wegener A (2003) Kataraktprävention. Ophthalmologe 100:176–180

    Article  PubMed  CAS  Google Scholar 

  36. Zarina S, Zhao HR, Abraham EC (2000) Advanced glycation endproducts in human senile and diabetic cataractous lens. Mol Cell Biochem 210:29–34

    Article  PubMed  CAS  Google Scholar 

  37. Zelenka PS, Gao CY, Rampalli A, Arora J, Chautheiwale V, He HY (1997) Cell cycle regulation in the lens- proliferation, quiescence, apoptosis and differentiation. Prog Retin Eye Res 16:303–322

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Gert Struck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tkachov, S.I., Lautenschläger, C., Ehrich, D. et al. Changes in the lens epithelium with respect to cataractogenesis—light microscopic and Scheimpflug densitometric analysis of the cataractous and the clear lens of diabetics and non-diabetics. Graefe's Arch Clin Exp Ophthalmo 244, 596–602 (2006). https://doi.org/10.1007/s00417-005-0091-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-005-0091-7

Keywords

Navigation