Skip to main content

Advertisement

Log in

Direct stimulation of optic nerve by electrodes implanted in optic disc of rabbit eyes

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To determine whether wire microelectrodes implanted in the optic disc can be used to elicit cortical potentials.

Methods

Two or four platinum wire electrodes of two types, viz., the cut-end type and the exposed-tip type, were inserted through the vitreous and fixed in the optic disc of 16 rabbit eyes. Electrically evoked potentials (EEPs) were recorded after bipolar electrical stimulation with the two wire electrodes and by different combinations of the four-electrode system. The optic discs were examined histologically after the experiment.

Results

The wire electrodes were successfully implanted and fixed into different positions of the optic disc without serious complications in all 16 eyes. EEPs could be elicited after bipolar electrical stimulation of the optic nerve using either the two-electrode system or different pairs of the four-electrode system. Threshold charge densities to elicit EEPs were 0.32–0.64 mC/cm2 in eyes using the cut-end type of electrodes and 0.93–6.21 μC/cm2 in eyes using the exposed-tip type. The amplitude of the EEPs increased with increasing electrical stimulus intensities. Histological evaluation revealed limited damage to the neural tissue adjacent to the electrode track.

Conclusions

The visual cortex can be activated by direct microelectrical stimulation of the optic nerve. The acute implantation of the wire microelectrodes into the optic disc by a transvitreal approach is feasible and results in only limited damage to the optic nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bartley SH, Bishop GH (1933) The cortical response to stimulation of the optic nerve in the rabbit. Am J Physiol 103:159–172

    Google Scholar 

  2. Chow AY, Chow VY (1997) Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 225:13–16

    Article  CAS  PubMed  Google Scholar 

  3. Delbeke J, Wanet-Defalque MC, Gerard B, Troosters M, Michaux G, Veraat C (2002) The microsystems based visual prosthesis for optic nerve stimulation. Artif Organs 26:232–234

    Article  PubMed  Google Scholar 

  4. Dobelle WH, Mladejovsky MG (1974) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol 243:553–576

    CAS  PubMed  Google Scholar 

  5. Eckmiller R (1997) Learning retina implants with epiretinal contacts. Ophthalmic Res 29:281–289

    CAS  PubMed  Google Scholar 

  6. Hansen RI, Friedman AH, Gartner S, Henkind P (1977) The association of retinitis pigmentosa with preretinal macular gliosis. Br J Ophthalmol 61:597–600

    CAS  PubMed  Google Scholar 

  7. Humayun MS, Propst R, de Juan E Jr, McCormick K, Hickingbotham D (1994) Bipolar surface electrical stimulation of the vertebrate retina. Arch Ophthalmol 112:110–116

    CAS  PubMed  Google Scholar 

  8. Humayun MS, de Juan E Jr, Weiland JD, Dagnelie G, Katona S, Greenberg R, Suzuki S (1999) Pattern electrical stimulation of the human retina. Vision Res 39:2569–2576

    Article  CAS  PubMed  Google Scholar 

  9. Humayun MS, Prince M, de Juan E Jr, Barron Y, Moskowitz M, Klock IB, Milam AH (1999) Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 40:143–148

    CAS  PubMed  Google Scholar 

  10. Kanda H, Morimoto T, Fujikado T, Tano Y, Fukuda Y, Sawai H (2004) Electrophysiological studies of the feasibility of suprachoroidal-transretinal stimulation for artificial vision in normal and RCS rats. Invest Ophthalmol Vis Sci 45:560–566

    Article  PubMed  Google Scholar 

  11. Lit ES, Tsilimbaris M, Gotzaridis E, D’Amico DJ (2002) Lamina puncture: pars plana optic disc surgery for central retinal vein occlusion. Arch Ophthalmol 120:495–499

    PubMed  Google Scholar 

  12. Malis LI, Kruger L (1956) Multiple response and excitability of cat’s visual cortex. J Neurophysiol 19:172–186

    CAS  PubMed  Google Scholar 

  13. Margalit E, Maia M, Weiland JD, Greenberg RJ, Fujii GY, Torres G, Piyathaisere DV, O’Hearn TM, Liu W, Lazzi G, Dagnelie G, Scribner DA, de Juan E Jr, Humayun MS (2002) Retinal prosthesis for the blind. Surv Ophthalmol 47:335–356

    Article  PubMed  Google Scholar 

  14. Morimoto T, Miyashi T, Fujikado T, Tano Y, Fukuda Y (2002) Electrical stimulation enhances the survival of axotomized retinal ganglion cells in vivo. Neuroreport 13:227–229

    Article  PubMed  Google Scholar 

  15. Nadig MN (1999) Development of a silicon retinal implant: cortical evoked potentials following focal stimulation of the rabbit retina with light and electricity. Clin Neurophysiol 110:1545–1553

    Article  CAS  PubMed  Google Scholar 

  16. Normann RA, Warren DJ, Ammermuller J, Fernandez E, Guillory S (2001) High-resolution spatio-temporal mapping of visual pathways using multi-electrode arrays. Vision Res 41:1261–1275

    Article  CAS  PubMed  Google Scholar 

  17. Opremack EM, Bruce RA, Lomeo MD, Ridenour CD, Letson AD, Rehmar AJ (2001) Radial optic neurotomy for central retinal vein occlusion: a retrospective pilot study of 11 consecutive cases. Retina 21:408–415

    Article  PubMed  Google Scholar 

  18. Rizzo JF, Wyatt J (1997) Prospects for a visual prosthesis. Neuroscientist 3:251–262

    Google Scholar 

  19. Rizzo JF 3rd, Wyatt J, Humayun M, de Juan E, Liu W, Chow A, Eckmiller R, Zrenner E, Yagi T, Abrams G (2001) Retinal prosthesis: an encouraging first decade with major challenges ahead. Ophthalmology 108:13–14

    Article  PubMed  Google Scholar 

  20. Sakaguchi H, Fujikado T, Fang XY, Kanda H, Osanai M, Nakauchi K, Ikuno Y, Kamei M, Yagi T, Nishimura S, Ohji M, Yagi T, Tano Y (2004) Transretinal electrical stimulation with a suprachoroidal multichannel electrode in rabbit eyes. Jpn J Ophthalmol 48:256–261

    Article  PubMed  Google Scholar 

  21. Sakaguchi H, Fujikado T, Kanda H, Osanai M, Fang XY, Nakauchi K, Ikuno Y, Kamei M, Ohji M, Yagi T, Tano Y (2004) Electrical stimulation with a needle type electrode placed into the optic nerve in rabbit eyes. Jpn J Ophthalmol (in press)

  22. Santos A, Humayun MS, de Juan E Jr, Greenberg BJ, Marsh MJ, Klock IB, Milam AH. (1997) Preservation of the inner retina in retinitis pigmentosa. Arch Ophthalmol 115:511–515

    CAS  PubMed  Google Scholar 

  23. Schwahn HN, Gekeler F, Kohler K, Kobuch K, Sachs HG, Schulmeyer F, Jakob W, Gabel VP, Zrenner E (2001) Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit. Graefes Arch Clin Exp Ophthalmol 239:961–967

    CAS  PubMed  Google Scholar 

  24. Sugiyama T, Hara H, Oku H, Nakatsuji S, Okuno T, Sasaoka M, Ota T, Ikeda T (2001) Optic cup enlargement followed by reduced optic nerve head circulation after optic nerve stimulation. Invest Ophthalmol Vis Sci 42:2843–2848

    CAS  PubMed  Google Scholar 

  25. Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, Vanlierde A, Parrini S, Wanet-Defalque MC (1998) Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 813:181–186

    Article  CAS  PubMed  Google Scholar 

  26. Veraart C, Wanet-Defalque MC, Gérard B, Vanlierde A, Delbeke J (2003) Pattern Recognition with the optic nerve visual prosthesis. Artif Organs 27:996–1004

    Article  PubMed  Google Scholar 

  27. Walter P, Szurman P, Vobig M, Berk H, Ludtke-Handjery HC, Richter H, Mittermayer C, Heimann K, Sellhaus B (1999) Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. Retina 19:546–552

    Article  CAS  PubMed  Google Scholar 

  28. Walter P, Heimann K (2000) Evoked cortical potentials after electrical stimulation of the inner retina in rabbits. Graefes Arch Clin Exp Ophthalmol 238:315–318

    Article  CAS  PubMed  Google Scholar 

  29. Yanagida K, Miyake Y (1984) Electrically evoked response (EER) in the rabbit. Nippon Ganka Gakkai Zasshi 88:997–1006

    CAS  PubMed  Google Scholar 

  30. Zrenner E (2002) Will retinal implants restore vision? Science 295:1022–1025

    Article  CAS  PubMed  Google Scholar 

  31. Zrenner E, Miliczek KD, Gabel VP, Graf HG, Guenther E, Haemmerle H, Hoefflinger B, Kohler K, Nisch W, Schubert M, Stett A, Weiss S (1997) The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res 29:269–280

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Grant from the Ministry of Education, Culture, Sports, Science and Technology (No. 14571670), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, X., Sakaguchi, H., Fujikado, T. et al. Direct stimulation of optic nerve by electrodes implanted in optic disc of rabbit eyes. Graefe's Arch Clin Exp Ophthalmol 243, 49–56 (2005). https://doi.org/10.1007/s00417-004-0957-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-004-0957-0

Keywords

Navigation