Skip to main content

Advertisement

Log in

Expression of serotonin receptor mRNAs in human ciliary body: a polymerase chain reaction study

  • Short Communication
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Previous research has indicated a role for serotonin (5-HT) in the anterior uvea of the eye. The purpose of this study was to examine whether mRNAs encoding particular 5-HT receptors are expressed in the ciliary body and iris of a number of human subjects.

Methods

The presence of mRNA encoding 5-HT receptors in four human ciliary body samples was determined by reverse transcription–polymerase chain reaction experiments using a standard methodology.

Results

Positive signals for 5-HT1A, 5-HT2A, 5-HT2B, 5-HT2C and 5-HT7 receptor mRNAs were detected in the samples prepared from various human ciliary body samples.

Conclusion

The detection of certain 5-HT receptor mRNAs in the human ciliary body supports the hypothesis that serotonin is involved in the control of aqueous dynamics and indicates that ligands acting on these 5-HT receptors may have potential use as intraocular pressure-lowering agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Barnett NL, Osborne NN (1993) The presence of serotonin (5-HT1) receptors negatively coupled to adenylate cyclase in rabbit and human iris–ciliary processes. Exp Eye Res 57:209–216

    Article  CAS  PubMed  Google Scholar 

  2. Chang FW, Burke JA, Potter DE (1985) Mechanism of the ocular hypotensive action of ketanserin. J Ocul Pharmacol 1:137–147

    CAS  PubMed  Google Scholar 

  3. Chidlow G, De Santis LM, Sharif NA, Osborne NN (1995) Characteristics of [3H]5-hydroxytryptamine binding to iris–ciliary body tissue of the rabbit. Invest Ophthalmol Vis Sci 36:2238–2245

    CAS  PubMed  Google Scholar 

  4. Chidlow G, Le Corre S, Osborne NN (1998) Localization of 5-hydroxytryptamine1A and 5-hydroxytryptamine7 receptors in rabbit ocular and brain tissues. Neuroscience 87:675–689

    Article  CAS  PubMed  Google Scholar 

  5. Chidlow G, Nash MS, DeSantis LM, Osborne NN (1999) The 5-HT1A receptor agonist 8-OH-DPAT lowers intraocular pressure in normotensive NZW rabbits. Exp Eye Res 69:587–593

    Article  CAS  PubMed  Google Scholar 

  6. Chu TC, Ogidigben MJ, Potter DE (1999) 8OH-DPAT-Induced ocular hypotension: sites and mechanisms of action. Exp Eye Res 69:227–238

    Article  CAS  PubMed  Google Scholar 

  7. Costagliola C, Scibelli G, Fasano ML, Ferrara LA, Mastropasqua L (1991) Effect of oral ketanserin administration on intraocular pressure in glaucomatous patients. Exp Eye Res 52:507–510

    CAS  PubMed  Google Scholar 

  8. Costagliola C, Iuliano G, Rinaldi M, Russo V, Scibelli G, Mastropasqua L (1993) Effect of topical ketanserin administration on intraocular pressure. Br J Ophthalmol 77:344–348

    CAS  PubMed  Google Scholar 

  9. Gabelt BT, Millar CJ, Kiland JA, Peterson JA, Seeman JL, Kaufman PL (2001) Effects of serotonergic compounds on aqueous humor dynamics in monkeys. Curr Eye Res 23:120–127

    Article  CAS  PubMed  Google Scholar 

  10. Harris LC, Awe SO, Opere CA, Leday AM, Ohia SE, Sharif NA (2001) [3H]-serotonin release from bovine iris–ciliary body: pharmacology of prejunctional serotonin (5-HT7) autoreceptors. Exp Eye Res 73:59–67

    Google Scholar 

  11. Harris LC, Awe SO, Opere CA, LeDay AM, Ohia SE, Sharif NA (2002) Pharmacology of serotonin receptors modulating electrically induced [3H]-norepinephrine release from isolated mammalian iris–ciliary bodies. J Ocul Pharmacol Ther 18:339–348

    Article  CAS  PubMed  Google Scholar 

  12. Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    Article  CAS  PubMed  Google Scholar 

  13. Inoue H, Kimura A, Tuji T (2002) Degradation profile of mRNA in a dead rat body: basic semi-quantification study. Forensic Sci Int 130:127–132

    Article  CAS  PubMed  Google Scholar 

  14. Inoue Matsuhisa E, Moroi SE, Takenaka H, Sogo S, Mano T (2003) 5-HT(2) receptor-mediated phosphoinositide hydrolysis in bovine ciliary epithelium. J Ocul Pharmacol Ther 19:55–62

    Article  PubMed  Google Scholar 

  15. Lograno MD, Romano MR (2003) Pharmacological characterization of the 5-HT1A, 5-HT2 and 5-HT3 receptors in the bovine ciliary muscle. Eur J Pharmacol 464:69–74

    Article  CAS  PubMed  Google Scholar 

  16. Martin XD, Brennan MC, Lichter PR (1988) Serotonin in human aqueous humor. Ophthalmology 95:1221–1226

    CAS  PubMed  Google Scholar 

  17. Martin XD, Malina HZ, Brennan MC, Hendrickson PH, Lichter PR (1992) The ciliary body—the third organ found to synthesize indoleamines in humans. Eur J Ophthalmol 2:67–72

    CAS  PubMed  Google Scholar 

  18. May JA, McLaughlin MA, Sharif NA, Hellberg MR, Dean TR (2003) Evaluation of the ocular hypotensive response of serotonin 5-HT1A and 5-HT2 receptor ligands in conscious ocular hypertensive cynomolgus monkeys. J Pharmacol Exp Ther 306:301–309

    Article  CAS  PubMed  Google Scholar 

  19. Osborne NN, Tobin AB (1987) Serotonin-accumulating cells in the iris–ciliary body and cornea of various species. Exp Eye Res 44:731–745

    CAS  PubMed  Google Scholar 

  20. Osborne NN, Wood JP, Melena J, Chao HM, Nash MS, Bron AJ, Chidlow G (2000) 5-Hydroxytryptamine1A agonists: potential use in glaucoma. Evidence from animal studies. Eye 14:454–463

    PubMed  Google Scholar 

  21. Sharif NA, Kelly CR, Crider JY, Senchyna M (2003) Human ciliary muscle and trabecular meshwork cells express functional serotonin-2 (5-HT2) receptors coupled to phosphoinositide turnover and [Ca2+]i mobilization. ARVO, pp 2084

  22. Tekat D, Guler C, Arici M, Topalkara A, Erdogan H (2001) Effect of ketanserin administration on intraocular pressure. Ophthalmologica 215:419–423

    Article  CAS  PubMed  Google Scholar 

  23. Tobin AB, Osborne NN (1989) Evidence for the presence of serotonin receptors negatively coupled to adenylate cyclase in the rabbit iris–ciliary body. J Neurochem 53:686–691

    CAS  PubMed  Google Scholar 

  24. Tobin AB, Unger W, Osborne NN (1988) Evidence for the presence of serotonergic nerves and receptors in the iris–ciliary body complex of the rabbit. J Neurosci 8:3713–3721

    CAS  PubMed  Google Scholar 

  25. Ullmer C, Schmuck K, Kalkman HO, Lubbert H (1995) Expression of serotonin receptor mRNAs in blood vessels. FEBS Lett 370:215–221

    CAS  PubMed  Google Scholar 

  26. Veglio F, De Sanctis U, Schiavone D, Cavallone S, Mulatero P, Grignolo FM, Chiandussi L (1998) Evaluation of serotonin levels in human aqueous humor. Ophthalmologica 212:160–163

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of Prof. B.E. Damato and the financial support of the European Union (PRO-AGE-RET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glyn Chidlow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chidlow, G., Hiscott, P.S. & Osborne, N.N. Expression of serotonin receptor mRNAs in human ciliary body: a polymerase chain reaction study. Graefe's Arch Clin Exp Ophthalmol 242, 259–264 (2004). https://doi.org/10.1007/s00417-003-0785-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-003-0785-7

Keywords

Navigation