Skip to main content

Advertisement

Log in

Melanocortins applied intravitreally delay retinal dystrophy in Royal College of Surgeons rats

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Background

α-Melanocyte-stimulating hormone (MSH) is a neurotrophic agent. In Royal College of Surgeons (RCS) rats, the effects of an MSH analog (MA) were investigated on: (1) the preservation of photoreceptors in vivo following MA intravitreal injection; (2) whether MA is a mitogenic factor.

Methods

The study comprised five RCS rat groups, two injected with different doses of MA, one injected with PBS , and two non-injected groups. A single injection of MA or PBS was applied intravitreally to RCS rats on postnatal day 20 (20p). Photoreceptor preservation on 40p was studied using light microscopy. Considering the mitogenic effect of MA, it was studied whether cell proliferation was induced by MA in cultured retinal pigment epithelium (RPE) using the thymidine uptake technique.

Results

In degenerating untreated RCS retinae the number of photoreceptor rows on 40p was 60–70% lower than on 20p. Retinae treated with higher doses of MA revealed on 40p a localized significant photoreceptor rescue in the retinal hemisphere which had been injected. However, only a small area of photoreceptor preservation was noted in the injected hemisphere in retinae treated with the lower MA dose. MA showed no mitogenic effect in endothelial or RPE cell culture in vitro.

Conclusions

This study is the first to demonstrate that: (1) intravitreally injected MA promotes a dose-related localized rescue of photoreceptors in RCS retinae which may be related to the hormone’s neurotrophic activity; (2) MA has no mitogenic or angiogenic properties; (3) MA, as a neuroprotective agent, might be considered for future treatment of retinal dystrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. Adan RA, Cone RD, Burbach JP, Gispen WH (1994) Differential effects of melanocortin peptides on neural melanocortin receptors. Mol Pharmacol 46:1182–1190

    CAS  PubMed  Google Scholar 

  2. Adan RA, Oosterom J, Toonen RF, Kraan MV, Burbach JP, Gispen WH. (1997) Molecular pharmacology of neural melanocortin receptors. Receptors Channels 5:215–223

    CAS  PubMed  Google Scholar 

  3. Adan RA, Szklarczyk AW, Oosterom J, Brakkee JH, Nijenhuis WA, Schaaper WM, Meloen RH, Gispen WH (1999) Characterization of melanocortin receptor ligands on cloned brain melanocortin receptors and on grooming behavior in the rat. Eur J Pharmacol 378: 249–258

    CAS  PubMed  Google Scholar 

  4. Antonawich FJ, Azmitia EC, Kramer HK, Strand FL (1994) Specificity versus redundancy of melanocortins in nerve regeneration. Ann N Y Acad Sci 739:60–73

    CAS  PubMed  Google Scholar 

  5. Bar-Ilan A, Savion N, Naveh N (1992) Alpha melanocyte stimulating hormone (alpha-MSH) enhances eicosanoid production by bovine retinal pigment epithelium [published erratum appears in Prostaglandins 1992 May; 43(5): 502]. Prostaglandins 43:31–44

    CAS  PubMed  Google Scholar 

  6. Buitelaar JK, Dekker ME, van Ree JM, van Engeland H (1996) A controlled trial with ORG 2766, an ACTH-(4–9) analog, in 50 relatively able children with autism. Eur Neuropsychopharmacol 6:13–19

    CAS  PubMed  Google Scholar 

  7. D’Amore PA, Klagsbrun M (1984) Endothelial cell mitogens derived from retina and hypothalamus: biochemical and biological similarities. J Cell Biol 99:1545–1549

    CAS  PubMed  Google Scholar 

  8. D’Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, La Vail MM, Vollrath D (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9:645–651

    Article  CAS  PubMed  Google Scholar 

  9. De Koning P, Gispen WH (1987) Org.2766 improves functional and electrophysiological aspects of regenerating sciatic nerve in the rat. Peptides 8:415–422

    PubMed  Google Scholar 

  10. Edwards PM, Kuiters RR, Boer GJ, Gispen WH (1986) Recovery from peripheral nerve transaction is accelerated by local application of alpha-MSH by means of microporous Accurel polypropylene tubes. J Neurol Sci 74:171–176

    CAS  PubMed  Google Scholar 

  11. Faktorovich EG, Steinberg RH, Yasumura D, Matthes MT LaVail MM(1990) Photoreceptor degeneration in inherited retinal dystrophy is delayed by basic fibroblast growth factor. Nature 347:83–86

    CAS  PubMed  Google Scholar 

  12. Goodall T, Buffey JA, Rennie IG, Benson M, Parsons MA, Faulkner MK, MacNeil S (1994) Effect of melanocyte stimulating hormone on human cultured choroidal melanocytes, uveal melanoma cells, and retinal epithelial cells. Invest Ophthalmol Vis Sci 35:826–837

    Google Scholar 

  13. Haynes LW, Semenko FM (1989) The trophic responses of avian sensory ganglia in vitro to N-acetylated and desacetyl forms of alpha-melanocyte stimulating hormone(alpha MSH) are qualitatively distinct. Int J. Dev Neurosci 7:623–632

    CAS  Google Scholar 

  14. Hadley ME, Hruby VJ, Blanchard J, Dorr RT, Levine N, Dawson BV, al-Obeidi F, Sawyer TK (1998) Discovery and development of novel melanogenic drugs. Melanotan-I and -II. Pharm Biotechnol 11:575–595

    CAS  PubMed  Google Scholar 

  15. Jampol LM, Ebroon DA, Goldbaum MH (1994) Peripheral proliferative retinopathies: an update on angiogenesis, etiologies and management. Surv Ophthalmol 38:519–540

    CAS  PubMed  Google Scholar 

  16. Joosten EA, Verhaagh S, Martin D, Robe P, Franzen R, Hooiveld M, Doornbos R, Bar PR, Moonen G (1996) Alpha-MSH stimulates neurite outgrowth of neonatal rat corticospinal neurons in vitro. Brain Res 736:91–98

    CAS  PubMed  Google Scholar 

  17. Joosten EA, Majewska B, Houweling DA, Bar PR, Gispen WH (1999) Alpha-melanocyte stimulating hormone promotes regrowth of injured axons in the adult rat spinal cord. J Neurotrauma 16:543–553

    CAS  PubMed  Google Scholar 

  18. Kastin AJ, Beach GD, Hawley WD, Kendall JW Jr, Edwards MS, Schally AV (1973) Dissociation of MSH and ACTH release in man. J Clin Endocrinol Metab 36:770–772

    Google Scholar 

  19. Kimura H, Spee C, Sakamoto T, Hinton DR, Ogura Y, Tabata Y, Ikada Y, Ryan SJ (1999) Cellular response in subretinal neovascularization induced by basic FGF impregnated microspheres. Invest Ophthalmol Vis Sci 40:524–528

    CAS  PubMed  Google Scholar 

  20. Lankhorst AJ, Duis SE, ter Laak MP, Joosten EA, Hamers FP, Gispen WH (1999) Functional recovery after central infusion of alpha-melanocyte- stimulating hormone in rats with spinal cord contusion injury. J Neurotrauma 16:323–331

    CAS  PubMed  Google Scholar 

  21. LaVail MM, Unoki K, Yasumura D, Matthes MT, Yancopoulos GD, Steinberg RH (1992) Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light. Proc Natl Acad Sci USA 89:11249–11253

    CAS  PubMed  Google Scholar 

  22. LaVail MM, Yasumura D, Matthes MT, Lau-Villacorta C, Unoki K, Sung CH, Steinberg RH (1998) Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 39:592–602

    CAS  PubMed  Google Scholar 

  23. Monaghan AP, Davidson DR, Sime C, Graham E, Baldock R, Bhattacharya SS, Hill RE (1991) The MSH-like homeobox genes define domains in the developing vertebrate eye. Development 112:1053–1061

    CAS  PubMed  Google Scholar 

  24. Rosner M, Lam TT, Tso MOM (1992) Therapeutic parameters of methylprednisolone treatment for retinal photic injury in a rat model. Res Commun Chem Path Pharmacol 3:299–311

    Google Scholar 

  25. Schioth HB, Chhajlani V, Muceniece R, Klusa V, Wikberg JE (1996) Major pharmacological distinction of the ACTH receptor from other melanocortin receptors. Life Sci 59:797–801

    PubMed  Google Scholar 

  26. Strand FL, Lee SJ, Tee TZ, Zucacrelli LA, Antonawich FJ, Kume J, Williams KA (1993) Noncorticotropic ACTH peptides modulate nerve development and regeneration. Rev Neurosci 4:321–363

    CAS  PubMed  Google Scholar 

  27. Strand FL (1999) New vistas for melanocortins. Finally an explanation for their pleiotropic functions. Ann N Y Acad Sci 897:1–16

    CAS  PubMed  Google Scholar 

  28. Suzuki I, Cone RD, Nordland J, Abdel-Malek ZA(1996) Binding of melanotropic hormones to the melanocortin receptor MC1R on human melanocytes stimulates proliferation and melanogenesis. Endocrinology 137:1627–1663

    CAS  PubMed  Google Scholar 

  29. van der Kraan M, Tatro JB, Entwistle ML (1999) Expression of melanocortin receptors and pro-opiomelanocortin in the rat spinal cord in relation to neurotrophic effects of melanocortins. Brain Res Mol Brain Res 63:276–286

    PubMed  Google Scholar 

  30. van de Meent H, Hamers FP, Lankhorst AJ, Joosten EA, Gispen WH (1997) Beneficial effects of the melanocortin alpha-melanocyte-stimulating hormone on clinical and neurophysiological recovery after experimental spinal cord injury. Neurosurgery 40:130–131

    Google Scholar 

  31. Van der Neut R, Hol EM, Gispen WH, Bar PR (1992) Stimulation by melanocortins of neurite outgrowth from spinal and sensory neurons in vitro. Peptides 13:1109–1115

    PubMed  Google Scholar 

  32. Van der Neut R, Bar PR, Sodaar P, Gispen WH (1988) Trophic influences of alpha-MSH and ACTH4–10 on neuronal outgrowth in vitro. Peptides 9:1015–1020

    PubMed  Google Scholar 

  33. Wen R, Song Y, Cheng T, Matthes MT, Yasumura D, LaVail MM, Steinberg RH (1995) Injury-induced up regulation of bFGF and CNTF mRNAs in the rat retina. J Neurosci 15:7377–7385

    CAS  PubMed  Google Scholar 

  34. Wikberg JE (1999) Melanocortin receptors: perspectives for novel drugs. Eur J Pharmacol 375:295–310

    CAS  PubMed  Google Scholar 

  35. Wikberg JE, Muceniece R, Mandrika I, Prusis P, Lindblom J, Post E, Skottner A (2000) A new aspect of melanocortins and their receptors. Pharmacol Res 42:393–420

    CAS  PubMed  Google Scholar 

  36. Xiao M, Sastry SM, Li Z-Y, Possin DE, Chang JH, Klock IB, Milam AH (1998) Effects of retinal laser photocoagulation on photoreceptor basic fibroblast growth factor and survival. Invest Ophthalmol Vis Sci 39:618–630

    Google Scholar 

  37. Zhang NL, Samadani EE, Frank RN (1993) Mitogenesis and retinal pigment epithelial cell antigen expression in the rat after krypton laser photocoagulation. Invest Ophthalmol Vis Sci 34:2412–2424

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nava Naveh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naveh, N. Melanocortins applied intravitreally delay retinal dystrophy in Royal College of Surgeons rats. Graefe's Arch Clin Exp Ophthalmol 241, 1044–1050 (2003). https://doi.org/10.1007/s00417-003-0781-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-003-0781-y

Keywords

Navigation