Advertisement

Laser interference biometry versus ultrasound biometry in certain clinical conditions

  • B. A. M. LegeEmail author
  • W. Haigis
Clinical Investigation

Abstract

Purpose

To compare laser interference biometry (LIB) with conventional ultrasound biometry in certain clinical conditions such as globe deformities, eccentric fixation, retinal detachment, macular edema or silicone oil-filled eyes.

Setting

Department of Ophthalmology, Würzburg University Eye Hospital, Germany.

Methods

We evaluated all patients who came to our university hospital for axial length measurement with our routine immersion biometry system (Grieshaber Biometry System) and compared the results with those obtained using the Zeiss IOLMaster of Carl Zeiss Jena, the commercially available LIB device.

Results

Selected case reports demonstrate the advantages and disadvantages of LIB. Advantages of LIB were found in patients with asymmetrically shaped globes, eccentric fixation, silicone oil-filled eyes and a fearful/nervous disposition. Disadvantages of the system were revealed in cases of retinal detachment, severe opacities along the visual axis and poor patient cooperation.

Conclusion

We showed that LIB is a valuable addition to the choice of biometric devices, when used with medical understanding.

Keywords

Retinal Detachment Macular Edema Axial Length Corneal Radius Visual Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Curtin BJ, Karlin DB (1971) Axial length measurements and fundus changes of the myopic eye. Am J Ophthalmol 71 (1): 42–53Google Scholar
  2. 2.
    Fercher AF (1996) Optical coherence tomography. J Biomed Opt 1 (2): 157–173Google Scholar
  3. 3.
    Fercher AF, Roth E (1986) Ophthalmic laser interferometer. Proc SPIE 658:48–51Google Scholar
  4. 4.
    Haigis W (1995) Biometrie. In: Straub W, Kroll P, Küchle HJ (eds) Augenärztliche Untersuchungsmethoden. Enke, Stuttgart, pp 255–304Google Scholar
  5. 5.
    Haigis W (2001) Pseudophakic correction factors for optical biometry. Graefes Arch Clin Exp Ophthalmol 239:589–598Google Scholar
  6. 6.
    Haigis W, Lege BAM, Miller N, Schneider B (2000) Comparison of immersion ultrasound biometry and partial coherence interferometry for IOL calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol 238:765–773PubMedGoogle Scholar
  7. 7.
    Hitzenberger CK (1992) Measurement of corneal thickness by low-coherence interferometry. Appl Opt 31:6637–6642Google Scholar
  8. 8.
    Hitzenberger CK, Drexler W, Dolezal C, Skorpik F, Juchem M, Fercher AF, Gnad HD (1993) Measurement of the axial length of cataract eyes by laser Doppler interferometry. Invest Ophthalmol Vis Sci 34(6):1886–1893PubMedGoogle Scholar
  9. 9.
    Lege BAM, Haigis W (2000) Erste klinische Erfahrungen mit der optischen Biometrie. In: Kohnen T, Ohrloff C, Wenzel M (eds) 13. Kongress der deutschsprachigen Gesellschaft für Intra-okularlinsen-Implant. und refraktive Chirurgie, Frankfurt am Main 3/1999. Biermann, Cologne, pp 175–179Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.ALZ AugenklinikMunichGermany
  2. 2.University Eye HospitalWürzburgGermany

Personalised recommendations