Skip to main content

Advertisement

Log in

Moving towards a new era for the treatment of neuromyelitis optica spectrum disorders

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Neuromyelitis optica spectrum disorders (NMOSD) include a rare group of autoimmune conditions that primarily affect the central nervous system. They are characterized by inflammation and damage to the optic nerves, brain and spinal cord, leading to severe vision impairment, locomotor disability and sphynteric disturbances. In the majority of cases, NMOSD arises due to specific serum immunoglobulin G (IgG) autoantibodies targeting aquaporin 4 (AQP4-IgG), which is the most prevalent water-channel protein of the central nervous system. Early diagnosis and treatment are crucial to manage symptoms and prevent long-term disability in NMOSD patients. NMOSD were previously associated with a poor prognosis. However, recently, a number of randomized controlled trials have demonstrated that biological therapies acting on key elements of NMOSD pathogenesis, such as B cells, interleukin-6 (IL-6) pathway, and complement, have impressive efficacy in preventing the occurrence of clinical relapses. The approval of the initial drugs marks a revolutionary advancement in the treatment of NMOSD patients, significantly transforming therapeutic options and positively impacting their prognosis. In this review, we will provide an updated overview of the key immunopathological, clinical, laboratory, and neuroimaging aspects of NMOSD. Additionally, we will critically examine the latest advancements in NMOSD treatment approaches. Lastly, we will discuss key aspects regarding optimization of treatment strategies and their monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Jarius S, Paul F, Weinshenker BG, Levy M, Kim HJ, Wildemann B (2020) Neuromyelitis optica. Nat Rev Dis Primers 6(1):85. https://doi.org/10.1038/s41572-020-0214-9

    Article  PubMed  Google Scholar 

  2. Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T et al (2015) International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85(2):177–189. https://doi.org/10.1212/WNL.0000000000001729

    Article  PubMed  PubMed Central  Google Scholar 

  3. Papp V, Magyari M, Aktas O, Berger T, Broadley SA, Cabre P et al (2021) Worldwide incidence and prevalence of neuromyelitis optica: a systematic review. Neurology 96(2):59–77. https://doi.org/10.1212/WNL.0000000000011153

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wingerchuk DM, Lucchinetti CF (2022) Neuromyelitis optica spectrum disorder. N Engl J Med 387(7):631–639. https://doi.org/10.1056/NEJMra1904655

    Article  PubMed  Google Scholar 

  5. Matiello M, Kim HJ, Kim W, Brum DG, Barreira AA, Kingsbury DJ et al (2010) Familial neuromyelitis optica. Neurology 75(4):310–315. https://doi.org/10.1212/WNL.0b013e3181ea9f15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Estrada K, Whelan CW, Zhao F, Bronson P, Handsaker RE, Sun C et al (2018) A whole-genome sequence study identifies genetic risk factors for neuromyelitis optica. Nat Commun 9(1):1929. https://doi.org/10.1038/s41467-018-04332-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Graves J, Grandhe S, Weinfurtner K, Krupp L, Belman A, Chitnis T et al (2014) Protective environmental factors for neuromyelitis optica. Neurology 83(21):1923–1929. https://doi.org/10.1212/WNL.0000000000001001

    Article  PubMed  PubMed Central  Google Scholar 

  8. Narumi Y, Yoshida R, Minami Y, Yamamoto Y, Takeguchi S, Kano K et al (2018) Neuromyelitis optica spectrum disorder secondary to treatment with anti-PD-1 antibody nivolumab: the first report. BMC Cancer 18(1):95. https://doi.org/10.1186/s12885-018-3997-2

    Article  PubMed  PubMed Central  Google Scholar 

  9. Weiss D, Cantre D, Zettl UK, Storch A, Prudlo J (2022) Lethal form of a late-onset aquaporin-4 antibody-positive NMOSD related to the immune checkpoint inhibitor nivolumab. J Neurol 269(5):2778–2780. https://doi.org/10.1007/s00415-021-10913-y

    Article  CAS  PubMed  Google Scholar 

  10. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K et al (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364(9451):2106–2112. https://doi.org/10.1016/S0140-6736(04)17551-X

    Article  CAS  PubMed  Google Scholar 

  11. Tahara M, Oeda T, Okada K, Kiriyama T, Ochi K, Maruyama H et al (2020) Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 19(4):298–306. https://doi.org/10.1016/S1474-4422(20)30066-1

    Article  CAS  PubMed  Google Scholar 

  12. Li R, Bar-Or A (2019) The multiple roles of B cells in multiple sclerosis and their implications in multiple sclerosis therapies. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a029108

    Article  PubMed  PubMed Central  Google Scholar 

  13. Afzali AM, Nirschl L, Sie C, Pfaller M, Ulianov O, Hassler T et al (2024) B cells orchestrate tolerance to the neuromyelitis optica autoantigen AQP4. Nature 627(8003):407–415. https://doi.org/10.1038/s41586-024-07079-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Varrin-Doyer M, Spencer CM, Schulze-Topphoff U, Nelson PA, Stroud RM, Cree BA et al (2012) Aquaporin 4-specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize Clostridium ABC transporter. Ann Neurol 72(1):53–64. https://doi.org/10.1002/ana.23651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Duan T, Smith AJ, Verkman AS (2019) Complement-independent bystander injury in AQP4-IgG seropositive neuromyelitis optica produced by antibody-dependent cellular cytotoxicity. Acta Neuropathol Commun 7(1):112. https://doi.org/10.1186/s40478-019-0766-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Soltys J, Liu Y, Ritchie A, Wemlinger S, Schaller K, Schumann H et al (2019) Membrane assembly of aquaporin-4 autoantibodies regulates classical complement activation in neuromyelitis optica. J Clin Invest 129(5):2000–2013. https://doi.org/10.1172/JCI122942

    Article  PubMed  PubMed Central  Google Scholar 

  17. Asavapanumas N, Ratelade J, Verkman AS (2014) Unique neuromyelitis optica pathology produced in naive rats by intracerebral administration of NMO-IgG. Acta Neuropathol 127(4):539–551. https://doi.org/10.1007/s00401-013-1204-8

    Article  CAS  PubMed  Google Scholar 

  18. Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM et al (2002) A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 125(Pt 7):1450–1461. https://doi.org/10.1093/brain/awf151

    Article  PubMed  Google Scholar 

  19. Hinson SR, Roemer SF, Lucchinetti CF, Fryer JP, Kryzer TJ, Chamberlain JL et al (2008) Aquaporin-4-binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2. J Exp Med 205(11):2473–2481. https://doi.org/10.1084/jem.20081241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hinson SR, Romero MF, Popescu BF, Lucchinetti CF, Fryer JP, Wolburg H et al (2012) Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc Natl Acad Sci USA 109(4):1245–1250. https://doi.org/10.1073/pnas.1109980108

    Article  PubMed  Google Scholar 

  21. Macaron G, Khoury J, Bena J, Seay M, Bermel RA, Cohen JA et al (2021) Early age of onset predicts severity of visual impairment in patients with neuromyelitis optica spectrum disorder. Mult Scler 27(11):1749–1759. https://doi.org/10.1177/1352458520981736

    Article  CAS  PubMed  Google Scholar 

  22. Camera V, Holm-Mercer L, Ali AAH, Messina S, Horvat T, Kuker W et al (2021) Frequency of new silent mri lesions in myelin oligodendrocyte glycoprotein antibody disease and aquaporin-4 antibody neuromyelitis optica spectrum disorder. JAMA Netw Open 4(12):e2137833. https://doi.org/10.1001/jamanetworkopen.2021.37833

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ma X, Kermode AG, Hu X, Qiu W (2020) Risk of relapse in patients with neuromyelitis optica spectrum disorder: recognition and preventive strategy. Mult Scler Relat Disord 46:102522. https://doi.org/10.1016/j.msard.2020.102522

    Article  PubMed  Google Scholar 

  24. Siriratnam P, Huda S, Butzkueven H, van der Walt A, Jokubaitis V, Monif M (2023) A comprehensive review of the advances in neuromyelitis optica spectrum disorder. Autoimmun Rev 22(12):103465. https://doi.org/10.1016/j.autrev.2023.103465

    Article  CAS  PubMed  Google Scholar 

  25. Waters PJ, Pittock SJ, Bennett JL, Jarius S, Weinshenker BG, Wingerchuk DM (2014) Evaluation of aquaporin-4 antibody assays. Clin Exp Neuroimmunol 5(3):290–303. https://doi.org/10.1111/cen3.12107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Prain K, Woodhall M, Vincent A, Ramanathan S, Barnett MH, Bundell CS et al (2019) AQP4 antibody assay sensitivity comparison in the Era of the 2015 diagnostic criteria for NMOSD. Front Neurol 10:1028. https://doi.org/10.3389/fneur.2019.01028

    Article  PubMed  PubMed Central  Google Scholar 

  27. Waters P, Reindl M, Saiz A, Schanda K, Tuller F, Kral V et al (2016) Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica. J Neurol Neurosurg Psychiatry 87(9):1005–1015. https://doi.org/10.1136/jnnp-2015-312601

    Article  PubMed  Google Scholar 

  28. Hinson SR, Lennon VA, Pittock SJ (2016) Autoimmune AQP4 channelopathies and neuromyelitis optica spectrum disorders. Handb Clin Neurol 133:377–403. https://doi.org/10.1016/B978-0-444-63432-0.00021-9

    Article  PubMed  Google Scholar 

  29. Gastaldi M, Zardini E, Scaranzin S, Uccelli A, Andreetta F, Baggi F et al (2019) Autoantibody diagnostics in neuroimmunology: experience from the 2018 Italian neuroimmunology association external quality assessment program. Front Neurol 10:1385. https://doi.org/10.3389/fneur.2019.01385

    Article  PubMed  Google Scholar 

  30. Fu Y, Bi J, Yan Y, Sun X, Li K, Kim SY et al (2023) Rapid immunodot AQP4 assay for neuromyelitis optica spectrum disorder. JAMA Neurol 80(10):1105–1112. https://doi.org/10.1001/jamaneurol.2023.2974

    Article  PubMed  Google Scholar 

  31. Akaishi T, Takahashi T, Misu T, Kaneko K, Takai Y, Nishiyama S et al (2021) Difference in the source of anti-AQP4-IgG and anti-MOG-IgG antibodies in CSF in patients with neuromyelitis optica spectrum disorder. Neurology 97(1):e1–e12. https://doi.org/10.1212/WNL.0000000000012175

    Article  PubMed  PubMed Central  Google Scholar 

  32. Majed M, Fryer JP, McKeon A, Lennon VA, Pittock SJ (2016) Clinical utility of testing AQP4-IgG in CSF: Guidance for physicians. Neurol Neuroimmunol Neuroinflamm 3(3):e231. https://doi.org/10.1212/NXI.0000000000000231

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jitprapaikulsan J, Fryer JP, Majed M, Smith CY, Jenkins SM, Cabre P et al (2020) Clinical utility of AQP4-IgG titers and measures of complement-mediated cell killing in NMOSD. Neurol Neuroimmunol Neuroinflamm. https://doi.org/10.1212/NXI.0000000000000727

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yin HX, Wang YJ, Liu MG, Zhang DD, Ren HT, Mao ZF et al (2023) Aquaporin-4 antibody dynamics and relapse risk in seropositive neuromyelitis optica spectrum disorder treated with immunosuppressants. Ann Neurol 93(6):1069–1081. https://doi.org/10.1002/ana.26623

    Article  CAS  PubMed  Google Scholar 

  35. Majed M, Valencia Sanchez C, Bennett JL, Fryer J, Mulligan MD, Redenbaugh V et al (2023) Alterations in aquaporin-4-IgG serostatus in 986 patients: a laboratory-based longitudinal analysis. Ann Neurol 94(4):727–735. https://doi.org/10.1002/ana.26722

    Article  CAS  PubMed  Google Scholar 

  36. Solomon AJ, Arrambide G, Brownlee WJ, Flanagan EP, Amato MP, Amezcua L et al (2023) Differential diagnosis of suspected multiple sclerosis: an updated consensus approach. Lancet Neurol 22(8):750–768. https://doi.org/10.1016/S1474-4422(23)00148-5

    Article  PubMed  Google Scholar 

  37. Bennett JL, Costello F, Chen JJ, Petzold A, Biousse V, Newman NJ et al (2023) Optic neuritis and autoimmune optic neuropathies: advances in diagnosis and treatment. Lancet Neurol 22(1):89–100. https://doi.org/10.1016/S1474-4422(22)00187-9

    Article  CAS  PubMed  Google Scholar 

  38. Ramanathan S, Prelog K, Barnes EH, Tantsis EM, Reddel SW, Henderson AP et al (2016) Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis. Mult Scler 22(4):470–482. https://doi.org/10.1177/1352458515593406

    Article  CAS  PubMed  Google Scholar 

  39. Cacciaguerra L, Meani A, Mesaros S, Radaelli M, Palace J, Dujmovic-Basuroski I et al (2019) Brain and cord imaging features in neuromyelitis optica spectrum disorders. Ann Neurol 85(3):371–384. https://doi.org/10.1002/ana.25411

    Article  PubMed  Google Scholar 

  40. Kim HJ, Aktas O, Patterson KR, Korff S, Kunchok A, Bennett JL et al (2023) Inebilizumab reduces neuromyelitis optica spectrum disorder risk independent of FCGR3A polymorphism. Ann Clin Transl Neurol 10(12):2413–2420. https://doi.org/10.1002/acn3.51911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ciccarelli O, Cohen JA, Reingold SC, Weinshenker BG, International Conference on Spinal Cord I, Imaging in Multiple S et al (2019) Spinal cord involvement in multiple sclerosis and neuromyelitis optica spectrum disorders. Lancet Neurol. 18(2):185–97. https://doi.org/10.1016/S1474-4422(18)30460-5

    Article  PubMed  Google Scholar 

  42. Kumpfel T, Giglhuber K, Aktas O, Ayzenberg I, Bellmann-Strobl J, Haussler V et al (2024) Update on the diagnosis and treatment of neuromyelitis optica spectrum disorders (NMOSD) - revised recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part II: Attack therapy and long-term management. J Neurol. 271(1):141–76. https://doi.org/10.1007/s00415-023-11910-z

    Article  PubMed  Google Scholar 

  43. Berthele A, Levy M, Wingerchuk DM, Pittock SJ, Shang S, Kielhorn A et al (2023) A single relapse induces worsening of disability and health-related quality of life in patients with neuromyelitis optica spectrum disorder. Front Neurol 14:1099376. https://doi.org/10.3389/fneur.2023.1099376

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kleiter I, Gahlen A, Borisow N, Fischer K, Wernecke KD, Wegner B et al (2016) Neuromyelitis optica: evaluation of 871 attacks and 1,153 treatment courses. Ann Neurol 79(2):206–216. https://doi.org/10.1002/ana.24554

    Article  CAS  PubMed  Google Scholar 

  45. Molazadeh N, Filippatou AG, Vasileiou ES, Levy M, Sotirchos ES (2021) Evidence for and against subclinical disease activity and progressive disease in MOG antibody disease and neuromyelitis optica spectrum disorder. J Neuroimmunol 360:577702. https://doi.org/10.1016/j.jneuroim.2021.577702

    Article  CAS  PubMed  Google Scholar 

  46. Wingerchuk DM, Pittock SJ, Lucchinetti CF, Lennon VA, Weinshenker BG (2007) A secondary progressive clinical course is uncommon in neuromyelitis optica. Neurology 68(8):603–605. https://doi.org/10.1212/01.wnl.0000254502.87233.9a

    Article  CAS  PubMed  Google Scholar 

  47. Cacciaguerra L, Tortorella P, Rocca MA, Filippi M (2021) Targeting neuromyelitis optica pathogenesis: results from randomized controlled trials of biologics. Neurotherapeutics 18(3):1623–1636. https://doi.org/10.1007/s13311-021-01055-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Costanzi C, Matiello M, Lucchinetti CF, Weinshenker BG, Pittock SJ, Mandrekar J et al (2011) Azathioprine: tolerability, efficacy, and predictors of benefit in neuromyelitis optica. Neurology 77(7):659–666. https://doi.org/10.1212/WNL.0b013e31822a2780

    Article  CAS  PubMed  Google Scholar 

  49. Bichuetti DB, Perin MMM, Souza NA, Oliveira EML (2019) Treating neuromyelitis optica with azathioprine: 20-year clinical practice. Mult Scler 25(8):1150–1161. https://doi.org/10.1177/1352458518776584

    Article  CAS  PubMed  Google Scholar 

  50. Stellmann JP, Krumbholz M, Friede T, Gahlen A, Borisow N, Fischer K et al (2017) Immunotherapies in neuromyelitis optica spectrum disorder: efficacy and predictors of response. J Neurol Neurosurg Psychiatry 88(8):639–647. https://doi.org/10.1136/jnnp-2017-315603

    Article  PubMed  Google Scholar 

  51. Elsone L, Kitley J, Luppe S, Lythgoe D, Mutch K, Jacob S et al (2014) Long-term efficacy, tolerability and retention rate of azathioprine in 103 aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder patients: a multicentre retrospective observational study from the UK. Mult Scler 20(11):1533–1540. https://doi.org/10.1177/1352458514525870

    Article  CAS  PubMed  Google Scholar 

  52. Wang Y, Ma J, Chang H, Zhang X, Yin L (2021) Efficacy of mycophenolate mofetil in the treatment of neuromyelitis optica spectrum disorders: An update systematic review and meta -analysis. Mult Scler Relat Disord 55:103181. https://doi.org/10.1016/j.msard.2021.103181

    Article  CAS  PubMed  Google Scholar 

  53. Montcuquet A, Collongues N, Papeix C, Zephir H, Audoin B, Laplaud D et al (2017) Effectiveness of mycophenolate mofetil as first-line therapy in AQP4-IgG, MOG-IgG, and seronegative neuromyelitis optica spectrum disorders. Mult Scler 23(10):1377–1384. https://doi.org/10.1177/1352458516678474

    Article  CAS  PubMed  Google Scholar 

  54. Mealy MA, Wingerchuk DM, Palace J, Greenberg BM, Levy M (2014) Comparison of relapse and treatment failure rates among patients with neuromyelitis optica: multicenter study of treatment efficacy. JAMA Neurol 71(3):324–330. https://doi.org/10.1001/jamaneurol.2013.5699

    Article  PubMed  Google Scholar 

  55. Marcinno A, Marnetto F, Valentino P, Martire S, Balbo A, Drago A et al (2018) Rituximab-induced hypogammaglobulinemia in patients with neuromyelitis optica spectrum disorders. Neurol Neuroimmunol Neuroinflamm 5(6):e498. https://doi.org/10.1212/NXI.0000000000000498

    Article  PubMed  PubMed Central  Google Scholar 

  56. Capobianco M, Malucchi S, di Sapio A, Gilli F, Sala A, Bottero R et al (2007) Variable responses to rituximab treatment in neuromyelitis optica (Devic’s disease). Neurol Sci 28(4):209–211. https://doi.org/10.1007/s10072-007-0823-z

    Article  CAS  PubMed  Google Scholar 

  57. Wang Y, Chang H, Zhang X, Yin L (2021) Efficacy of rituximab in the treatment of neuromyelitis optica spectrum disorders: An update systematic review and meta -analysis. Mult Scler Relat Disord 50:102843. https://doi.org/10.1016/j.msard.2021.102843

    Article  CAS  PubMed  Google Scholar 

  58. Kelly H, Vishnevetsky A, Chibnik LB, Levy M (2023) Hypogammaglobulinemia secondary to B-cell depleting therapies in neuroimmunology: comparing management strategies. Mult Scler J Exp Transl Clin 9(2):20552173231182536. https://doi.org/10.1177/20552173231182534

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bruschi N, Malentacchi M, Malucchi S, Sperli F, Martire S, Sala A et al (2023) Tailoring rituximab according to CD27-positive B-cell versus CD19-positive B-cell monitoring in neuromyelitis optica spectrum disorder and MOG-associated disease: results from a single-center study. Neurol Ther 12(4):1375–1383. https://doi.org/10.1007/s40120-023-00481-w

    Article  PubMed  PubMed Central  Google Scholar 

  60. Novi G, Bovis F, Capobianco M, Frau J, Mataluni G, Curti E et al (2019) Efficacy of different rituximab therapeutic strategies in patients with neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 36:101430. https://doi.org/10.1016/j.msard.2019.101430

    Article  PubMed  Google Scholar 

  61. Valentino P, Marnetto F, Granieri L, Capobianco M, Bertolotto A (2017) Aquaporin-4 antibody titration in NMO patients treated with rituximab: a retrospective study. Neurol Neuroimmunol Neuroinflamm 4(2):e317. https://doi.org/10.1212/NXI.0000000000000317

    Article  PubMed  Google Scholar 

  62. Cree BAC, Bennett JL, Kim HJ, Weinshenker BG, Pittock SJ, Wingerchuk DM et al (2019) Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 394(10206):1352–1363. https://doi.org/10.1016/S0140-6736(19)31817-3

    Article  CAS  PubMed  Google Scholar 

  63. Rensel M, Zabeti A, Mealy MA, Cimbora D, She D, Drappa J et al (2022) Long-term efficacy and safety of inebilizumab in neuromyelitis optica spectrum disorder: Analysis of aquaporin-4-immunoglobulin G-seropositive participants taking inebilizumab for ⩾4 years in the N-MOmentum trial. Mult Scler 28(6):925–932. https://doi.org/10.1177/13524585211047223

    Article  CAS  PubMed  Google Scholar 

  64. Bennett JL, Aktas O, Rees WA, Smith MA, Gunsior M, Yan L et al (2022) Association between B-cell depletion and attack risk in neuromyelitis optica spectrum disorder: An exploratory analysis from N-MOmentum, a double-blind, randomised, placebo-controlled, multicentre phase 2/3 trial. EBioMedicine 86:104321. https://doi.org/10.1016/j.ebiom.2022.104321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Aktas O, Hartung HP, Smith MA, Rees WA, Fujihara K, Paul F et al (2023) Serum neurofilament light chain levels at attack predict post-attack disability worsening and are mitigated by inebilizumab: analysis of four potential biomarkers in neuromyelitis optica spectrum disorder. J Neurol Neurosurg Psychiatry 94(9):757–768. https://doi.org/10.1136/jnnp-2022-330412

    Article  PubMed  Google Scholar 

  66. Fujihara K, Kim HJ, Saida T, Misu T, Nagano Y, Totsuka N et al (2023) Efficacy and safety of inebilizumab in Asian participants with neuromyelitis optica spectrum disorder: subgroup analyses of the N-MOmentum study. Mult Scler Relat Disord 79:104938. https://doi.org/10.1016/j.msard.2023.104938

    Article  CAS  PubMed  Google Scholar 

  67. Flanagan EP, Levy M, Katz E, Cimbora D, Drappa J, Mealy MA et al (2022) Inebilizumab for treatment of neuromyelitis optica spectrum disorder in patients with prior rituximab use from the N-MOmentum Study. Mult Scler Relat Disord 57:103352. https://doi.org/10.1016/j.msard.2021.103352

    Article  CAS  PubMed  Google Scholar 

  68. Marignier R, Pittock SJ, Paul F, Kim HJ, Bennett JL, Weinshenker BG et al (2022) AQP4-IgG-seronegative patient outcomes in the N-MOmentum trial of inebilizumab in neuromyelitis optica spectrum disorder. Mult Scler Relat Disord 57:103356. https://doi.org/10.1016/j.msard.2021.103356

    Article  CAS  PubMed  Google Scholar 

  69. Gottschalk TA, Tsantikos E, Hibbs ML (2015) Pathogenic inflammation and its therapeutic targeting in systemic lupus erythematosus. Front Immunol 6:550. https://doi.org/10.3389/fimmu.2015.00550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Icoz S, Tuzun E, Kurtuncu M, Durmus H, Mutlu M, Eraksoy M et al (2010) Enhanced IL-6 production in aquaporin-4 antibody positive neuromyelitis optica patients. Int J Neurosci 120(1):71–75. https://doi.org/10.3109/00207450903428970

    Article  PubMed  Google Scholar 

  71. Uzawa A, Mori M, Sawai S, Masuda S, Muto M, Uchida T et al (2013) Cerebrospinal fluid interleukin-6 and glial fibrillary acidic protein levels are increased during initial neuromyelitis optica attacks. Clin Chim Acta 421:181–183. https://doi.org/10.1016/j.cca.2013.03.020

    Article  CAS  PubMed  Google Scholar 

  72. Traboulsee A, Greenberg BM, Bennett JL, Szczechowski L, Fox E, Shkrobot S et al (2020) Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol 19(5):402–412. https://doi.org/10.1016/S1474-4422(20)30078-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yamamura T, Kleiter I, Fujihara K, Palace J, Greenberg B, Zakrzewska-Pniewska B et al (2019) Trial of Satralizumab in Neuromyelitis Optica Spectrum Disorder. N Engl J Med 381(22):2114–2124. https://doi.org/10.1056/NEJMoa1901747

    Article  CAS  PubMed  Google Scholar 

  74. Kleiter I, Traboulsee A, Palace J, Yamamura T, Fujihara K, Saiz A et al (2023) Long-term efficacy of satralizumab in AQP4-IgG-seropositive neuromyelitis optica spectrum disorder from sakurasky and sakurastar. Neurol Neuroimmunol Neuroinflamm. https://doi.org/10.1212/NXI.0000000000200071

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhang C, Zhang M, Qiu W, Ma H, Zhang X, Zhu Z et al (2020) Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial. Lancet Neurol 19(5):391–401. https://doi.org/10.1016/S1474-4422(20)30070-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Thomas TC, Rollins SA, Rother RP, Giannoni MA, Hartman SL, Elliott EA et al (1996) Inhibition of complement activity by humanized anti-C5 antibody and single-chain Fv. Mol Immunol 33(17–18):1389–1401. https://doi.org/10.1016/s0161-5890(96)00078-8

    Article  CAS  PubMed  Google Scholar 

  77. Pittock SJ, Berthele A, Fujihara K, Kim HJ, Levy M, Palace J et al (2019) Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N Engl J Med 381(7):614–625. https://doi.org/10.1056/NEJMoa1900866

    Article  CAS  PubMed  Google Scholar 

  78. Pittock SJ, Fujihara K, Palace J, Berthele A, Kim HJ, Oreja-Guevara C et al (2022) Eculizumab monotherapy for NMOSD: Data from PREVENT and its open-label extension. Mult Scler 28(3):480–486. https://doi.org/10.1177/13524585211038291

    Article  CAS  PubMed  Google Scholar 

  79. Wingerchuk DM, Fujihara K, Palace J, Berthele A, Levy M, Kim HJ et al (2021) Long-term safety and efficacy of eculizumab in aquaporin-4 IgG-positive NMOSD. Ann Neurol 89(6):1088–1098. https://doi.org/10.1002/ana.26049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Paul F, Marignier R, Palace J, Arrambide G, Asgari N, Bennett JL et al (2023) International Delphi consensus on the management of AQP4-IgG+ NMOSD: recommendations for eculizumab, inebilizumab, and satralizumab. Neurol Neuroimmunol Neuroinflamm. https://doi.org/10.1212/NXI.0000000000200124

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pittock SJ, Barnett M, Bennett JL, Berthele A, de Seze J, Levy M et al (2023) Ravulizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. Ann Neurol 93(6):1053–1068. https://doi.org/10.1002/ana.26626

    Article  CAS  PubMed  Google Scholar 

  82. Yamout B, Al-Jumah M, Sahraian MA, Almalik Y, Khaburi JA, Shalaby N et al (2024) Consensus recommendations for diagnosis and treatment of Multiple Sclerosis: 2023 revision of the MENACTRIMS guidelines. Mult Scler Relat Disord 83:105435. https://doi.org/10.1016/j.msard.2024.105435

    Article  CAS  PubMed  Google Scholar 

  83. Zhan Y, Zhao M, Li X, Ouyang H, Du C, Chen G et al (2023) A meaningful exploration of ofatumumab in refractory NMOSD: a case report. Front Immunol 14:1208017. https://doi.org/10.3389/fimmu.2023.1208017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Carnero Contentti E, Lopez PA, Rojas JI (2022) Emerging drugs for the acute treatment of relapses in adult neuromyelitis optica spectrum disorder patients. Expert Opin Emerg Drugs 27(1):91–98. https://doi.org/10.1080/14728214.2022.2059463

    Article  CAS  PubMed  Google Scholar 

  85. Liu Y, Huang Z, Zhang TX, Han B, Yang G, Jia D et al (2023) Bruton’s tyrosine kinase-bearing B cells and microglia in neuromyelitis optica spectrum disorder. J Neuroinflammation 20(1):309. https://doi.org/10.1186/s12974-023-02997-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Holzer MT, Ruffer N, Huber TB, Kotter I, Ostendorf L, Krusche M (2023) Daratumumab for autoimmune diseases: a systematic review. RMD Open. https://doi.org/10.1136/rmdopen-2023-003604

    Article  PubMed  PubMed Central  Google Scholar 

  87. Palace J, Lin DY, Zeng D, Majed M, Elsone L, Hamid S et al (2019) Outcome prediction models in AQP4-IgG positive neuromyelitis optica spectrum disorders. Brain 142(5):1310–1323. https://doi.org/10.1093/brain/awz054

    Article  PubMed  PubMed Central  Google Scholar 

  88. Seok JM, Cho HJ, Ahn SW, Cho EB, Park MS, Joo IS et al (2017) Clinical characteristics of late-onset neuromyelitis optica spectrum disorder: a multicenter retrospective study in Korea. Mult Scler 23(13):1748–1756. https://doi.org/10.1177/1352458516685416

    Article  PubMed  Google Scholar 

  89. Kim SM, Park J, Kim SH, Park SY, Kim JY, Sung JJ et al (2013) Factors associated with the time to next attack in neuromyelitis optica: accelerated failure time models with random effects. PLoS ONE 8(12):e82325. https://doi.org/10.1371/journal.pone.0082325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Weinshenker BG, Wingerchuk DM, Vukusic S, Linbo L, Pittock SJ, Lucchinetti CF et al (2006) Neuromyelitis optica IgG predicts relapse after longitudinally extensive transverse myelitis. Ann Neurol 59(3):566–569. https://doi.org/10.1002/ana.20770

    Article  CAS  PubMed  Google Scholar 

  91. Jarius S, Aboul-Enein F, Waters P, Kuenz B, Hauser A, Berger T et al (2008) Antibody to aquaporin-4 in the long-term course of neuromyelitis optica. Brain 131(Pt 11):3072–3080. https://doi.org/10.1093/brain/awn240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu J, Tan G, Li B, Zhang J, Gao Y, Cao Y et al (2021) Serum aquaporin 4-immunoglobulin G titer and neuromyelitis optica spectrum disorder activity and severity: a systematic review and meta-analysis. Front Neurol 12:746959. https://doi.org/10.3389/fneur.2021.746959

    Article  PubMed  PubMed Central  Google Scholar 

  93. Schmetzer O, Lakin E, Roediger B, Duchow A, Asseyer S, Paul F et al (2021) Anti-aquaporin 4 IgG is not associated with any clinical disease characteristics in neuromyelitis optica spectrum disorder. Front Neurol 12:635419. https://doi.org/10.3389/fneur.2021.635419

    Article  PubMed  PubMed Central  Google Scholar 

  94. Jiao Y, Fryer JP, Lennon VA, Jenkins SM, Quek AM, Smith CY et al (2013) Updated estimate of AQP4-IgG serostatus and disability outcome in neuromyelitis optica. Neurology 81(14):1197–1204. https://doi.org/10.1212/WNL.0b013e3182a6cb5c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T et al (2018) Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol 14(10):577–589. https://doi.org/10.1038/s41582-018-0058-z

    Article  CAS  PubMed  Google Scholar 

  96. Misu T, Takano R, Fujihara K, Takahashi T, Sato S, Itoyama Y (2009) Marked increase in cerebrospinal fluid glial fibrillar acidic protein in neuromyelitis optica: an astrocytic damage marker. J Neurol Neurosurg Psychiatry 80(5):575–577. https://doi.org/10.1136/jnnp.2008.150698

    Article  CAS  PubMed  Google Scholar 

  97. Chang X, Huang W, Wang L, ZhangBao J, Zhou L, Lu C et al (2021) Serum neurofilament light and GFAP are associated with disease severity in inflammatory disorders with aquaporin-4 or myelin oligodendrocyte glycoprotein antibodies. Front Immunol 12:647618. https://doi.org/10.3389/fimmu.2021.647618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Watanabe M, Nakamura Y, Michalak Z, Isobe N, Barro C, Leppert D et al (2019) Serum GFAP and neurofilament light as biomarkers of disease activity and disability in NMOSD. Neurology 93(13):e1299–e1311. https://doi.org/10.1212/WNL.0000000000008160

    Article  CAS  PubMed  Google Scholar 

  99. Aktas O, Smith MA, Rees WA, Bennett JL, She D, Katz E et al (2021) Serum glial fibrillary acidic protein: a neuromyelitis optica spectrum disorder biomarker. Ann Neurol 89(5):895–910. https://doi.org/10.1002/ana.26067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lee MY, Yong KP, Hyun JW, Kim SH, Lee SH, Kim HJ (2020) Incidence of interattack asymptomatic brain lesions in NMO spectrum disorder. Neurology 95(23):e3124–e3128. https://doi.org/10.1212/WNL.0000000000010847

    Article  CAS  PubMed  Google Scholar 

  101. Carnero Contentti E, Lopez PA, Tkachuk V, Vrech C, Zarate MA, Correale J et al (2023) Frequency of new asymptomatic MRI lesions during attacks and follow-up of patients with NMOSD in a real-world setting. Mult Scler 29(10):1240–1249. https://doi.org/10.1177/13524585231187120

    Article  CAS  PubMed  Google Scholar 

  102. Paolilo RB, Rimkus CM, da Paz JA, Apostolos-Pereira SL, Callegaro D, Sato DK (2022) Asymptomatic MRI lesions in pediatric-onset AQP4-IgG positive NMOSD. Mult Scler Relat Disord 68:104215. https://doi.org/10.1016/j.msard.2022.104215

    Article  CAS  PubMed  Google Scholar 

  103. Shah SS, Morris P, Buciuc M, Tajfirouz D, Wingerchuk DM, Weinshenker BG et al (2022) Frequency of asymptomatic optic nerve enhancement in a large retrospective cohort of patients with aquaporin-4+ NMOSD. Neurology 99(8):e851–e857. https://doi.org/10.1212/WNL.0000000000200838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Flanagan EP, Weinshenker BG, Krecke KN, Pittock SJ (2015) Asymptomatic myelitis in neuromyelitis optica and autoimmune aquaporin-4 channelopathy. Neurol Clin Pract 5(2):175–177. https://doi.org/10.1212/CPJ.0000000000000104

    Article  PubMed  PubMed Central  Google Scholar 

  105. Cao S, Zhu Y, Wu X, Du J, Xu S, Cui P et al (2024) Asymptomatic spinal lesions in patients with AQP4-IgG-positive NMOSD: a real-world cohort study. Ann Clin Transl Neurol. https://doi.org/10.1002/acn3.52007

    Article  PubMed  PubMed Central  Google Scholar 

  106. Cacciaguerra L, Pagani E, Radaelli M, Mesaros S, Martinelli V, Ivanovic J et al (2022) MR T2-relaxation time as an indirect measure of brain water content and disease activity in NMOSD. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2022-328956

    Article  PubMed  Google Scholar 

  107. Mealy MA, Mossburg SE, Kim SH, Messina S, Borisow N, Lopez-Gonzalez R et al (2019) Long-term disability in neuromyelitis optica spectrum disorder with a history of myelitis is associated with age at onset, delay in diagnosis/preventive treatment, MRI lesion length and presence of symptomatic brain lesions. Mult Scler Relat Disord 28:64–68. https://doi.org/10.1016/j.msard.2018.12.011

    Article  PubMed  Google Scholar 

  108. Duchow A, Bellmann-Strobl J, Friede T, Aktas O, Angstwurm K, Ayzenberg I et al (2023) Time to disability milestones and annualized relapse rates in NMOSD and MOGAD. Ann Neurol. https://doi.org/10.1002/ana.26858

    Article  Google Scholar 

  109. Collongues N, Marignier R, Zephir H, Papeix C, Blanc F, Ritleng C et al (2010) Neuromyelitis optica in France: a multicenter study of 125 patients. Neurology 74(9):736–742. https://doi.org/10.1212/WNL.0b013e3181d31e35

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No targeted funding reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Filippi.

Ethics declarations

Conflicts of interest

Paolo Preziosa received speaker honoraria from Roche, Biogen, Novartis, Merck Serono, Bristol Myers Squibb and Sanofi; he has received research support from Italian Ministry of Health and Fondazione Italiana Sclerosi Multipla. Maria Pia Amato has served on Scientific Advisory Boards for Biogen, Novartis, Roche, Merck, Sanofi Genzyme and Teva; has received speaker honoraria from Biogen, Merck, Sanofi Genzyme, Roche, Novartis and Teva; has received research grants for her Institution from Biogen, Merck, Sanofi Genzyme, Novartis and Roche. She is co-Editor of the Multiple Sclerosis Journal and Associate Editor of Frontiers in Neurology. Luca Battistini has served on Scientific Advisory Boards or has given advice to Horizon, Merck, Roche, Teva, Novartis, Bristol Myers Squibb, GSK, and Sanofi-Genzyme; has received speaker honoraria from Horizon, Janssen, Baxter, Merck, Roche, Teva, Biogen, Novartis, Bristol Myers Squibb, GSK, and Sanofi-Genzyme; his preclinical and clinical research was supported by grants from Baxter, Merck, Roche, Teva, Celgene and Sanofi-Genzyme; he has also received research support from Italian Ministry of Health and Fondazione Italiana Sclerosi Multipla. Marco Capobianco received personal compensation for consulting from Alexion, Biogen, Roche, Novartis, Sanofi, and Merck; research grant from Roche, Novartis and FISM. Diego Centonze is an Advisory Board member or has given advice to Almirall, Bayer Schering, Biogen, GW Pharmaceuticals, Merck Serono, Novartis, Roche, Sanofi-Genzyme, and Teva; has received honoraria for speaking or consultation fees from Almirall, Bayer Schering, Biogen, GW Pharmaceuticals, Merck Serono, Novartis, Roche, Sanofi-Genzyme, and Teva; is the principal investigator in clinical trials for Bayer Schering, Biogen, Merck Serono, Mitsubishi, Novartis, Roche, Sanofi-Genzyme, and Teva. His preclinical and clinical research was supported by grants from Bayer Schering, Biogen Idec, Celgene, Merck Serono, Novartis, Roche, Sanofi-Genzyme and Teva. Eleonora Cocco received personal compensation for consulting and speaker fees from Alexion, Biogen, BMS, Janssen, Merck, Novartis, Roche, and Sanofi. Antonella Conte received consulting research funding from Novartis, Roche, Biogen, Merck Serono, and Almirall. Claudio Gasperini has served on Scientific Advisory Boards for Biogen, Novartis, Roche, Merck, Sanofi Genzyme; has received speaker honoraria from Biogen, Merck, Bayer, Sanofi Genzyme, Roche, Novartis, Almirall, Mylan. Matteo Gastaldi received compensation for speaking activities and/or consulting services, from Alexion, UCB, and Roche. Carla Tortorella received travel funding and/or speaker honoraria from Alexion, Almirall, Biogen, Horizon, Merck, Novartis, Roche, Sanofi. Massimo Filippi is Editor-in-Chief of the Journal of Neurology, Associate Editor of Human Brain Mapping, Neurological Sciences, and Radiology; received compensation for consulting services from Alexion, Almirall, Biogen, Merck, Novartis, Roche, Sanofi; speaking activities from Bayer, Biogen, Celgene, Chiesi Italia SpA, Eli Lilly, Genzyme, Janssen, Merck-Serono, Neopharmed Gentili, Novartis, Novo Nordisk, Roche, Sanofi, Takeda, and TEVA; participation in Advisory Boards for Alexion, Biogen, Bristol-Myers Squibb, Merck, Novartis, Roche, Sanofi, Sanofi-Aventis, Sanofi-Genzyme, Takeda; scientific direction of educational events for Biogen, Merck, Roche, Celgene, Bristol-Myers Squibb, Lilly, Novartis, Sanofi-Genzyme; he receives research support from Biogen Idec, Merck-Serono, Novartis, Roche, the Italian Ministry of Health, the Italian Ministry of University and Research, and Fondazione Italiana Sclerosi Multipla.

Ethical standards

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preziosa, P., Amato, M.P., Battistini, L. et al. Moving towards a new era for the treatment of neuromyelitis optica spectrum disorders. J Neurol (2024). https://doi.org/10.1007/s00415-024-12426-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00415-024-12426-w

Keywords

Navigation