Skip to main content
Log in

Advanced neuroimaging techniques to explore the effects of motor and cognitive rehabilitation in multiple sclerosis

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Introduction

Progress in magnetic resonance imaging (MRI) technology and analyses is improving our comprehension of multiple sclerosis (MS) pathophysiology. These advancements, which enable the evaluation of atrophy, microstructural tissue abnormalities, and functional plasticity, are broadening our insights into the effectiveness and working mechanisms of motor and cognitive rehabilitative treatments.

Areas covered

This narrative review with selected studies discusses findings derived from the application of advanced MRI techniques to evaluate structural and functional neuroplasticity modifications underlying the effects of motor and cognitive rehabilitative treatments in people with MS (PwMS). Current applications as outcome measure in longitudinal trials and observational studies, their interpretation and possible pitfalls and limitations in their use are covered. Finally, we examine how the use of these techniques could evolve in the future to improve monitoring of motor and cognitive rehabilitative treatments.

Expert commentary

Despite substantial variability in study design and participant characteristics in rehabilitative studies for PwMS, improvements in motor and cognitive functions accompanied by structural and functional brain modifications induced by rehabilitation can be observed. However, significant enhancements to refine rehabilitation strategies are needed. Future studies in this field should strive to implement standardized methodologies regarding MRI acquisition and processing, possibly integrating multimodal measures. This will help identifying relevant markers of treatment response in PwMS, thus improving the use of rehabilitative interventions at individual level. The combination of motor and cognitive strategies, longer periods of treatment, as well as adequate follow-up assessments will contribute to enhance the quality of evidence in support of their routine use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Filippi M et al (2018) Multiple sclerosis. Nat Rev Dis Primers 4(1):43

    Article  PubMed  Google Scholar 

  2. Vaughn CB et al (2019) Epidemiology and treatment of multiple sclerosis in elderly populations. Nat Rev Neurol 15(6):329–342

    Article  PubMed  Google Scholar 

  3. Chen MH, Chiaravalloti ND, DeLuca J (2021) Neurological update: cognitive rehabilitation in multiple sclerosis. J Neurol 268(12):4908–4914

    Article  PubMed  Google Scholar 

  4. Goverover Y et al (2018) Evidenced-based cognitive rehabilitation for persons with multiple sclerosis: an updated review of the literature from 2007 to 2016. Arch Phys Med Rehabil 99(2):390–407

    Article  PubMed  Google Scholar 

  5. Lampit A et al (2019) Computerized cognitive training in multiple sclerosis: a systematic review and meta-analysis. Neurorehabil Neural Repair 33(9):695–706

    Article  PubMed  Google Scholar 

  6. Mitolo M et al (2015) Cognitive rehabilitation in multiple sclerosis: a systematic review. J Neurol Sci 354(1–2):1–9

    Article  PubMed  Google Scholar 

  7. Amatya B, Khan F, Galea M (2019) Rehabilitation for people with multiple sclerosis: an overview of Cochrane reviews. Cochrane Datab Syst Rev 1(1):CD012732

  8. Learmonth YC, Motl RW (2021) Exercise training for multiple sclerosis: a narrative review of history, benefits, safety, guidelines, and promotion. Int J Environ Res Public Health 18(24):1

  9. Cicerone KD et al (2000) Evidence-based cognitive rehabilitation: recommendations for clinical practice. Arch Phys Med Rehabil 81(12):1596–1615

    Article  CAS  PubMed  Google Scholar 

  10. Sastre-Garriga J et al (2020) MAGNIMS consensus recommendations on the use of brain and spinal cord atrophy measures in clinical practice. Nat Rev Neurol 16(3):171–182

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wattjes MP et al (2021) 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 20(8):653–670

    Article  PubMed  Google Scholar 

  12. Filippi M et al (2014) Insights from magnetic resonance imaging. Handb Clin Neurol 122:115–149

    Article  PubMed  Google Scholar 

  13. Rocca MA et al (2017) Brain MRI atrophy quantification in MS: from methods to clinical application. Neurology 88(4):403–413

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rocca MA, Preziosa P, Filippi M (2019) Application of advanced MRI techniques to monitor pharmacologic and rehabilitative treatment in multiple sclerosis: current status and future perspectives. Expert Rev Neurother 19(9):835–866

    Article  CAS  PubMed  Google Scholar 

  15. Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15(4):528–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gass A et al (2015) MRI monitoring of pathological changes in the spinal cord in patients with multiple sclerosis. Lancet Neurol 14(4):443–454

    Article  PubMed  Google Scholar 

  17. Riccitelli G et al (2011) Cognitive impairment in multiple sclerosis is associated to different patterns of gray matter atrophy according to clinical phenotype. Hum Brain Mapp 32(10):1535–1543

    Article  PubMed  Google Scholar 

  18. Filippi M, Preziosa P, Rocca MA (2017) Microstructural MR imaging techniques in multiple sclerosis. Neuroimaging Clin N Am 27(2):313–333

    Article  PubMed  Google Scholar 

  19. Schmierer K et al (2007) Diffusion tensor imaging of post mortem multiple sclerosis brain. Neuroimage 35(2):467–477

    Article  PubMed  Google Scholar 

  20. Martinez-Heras E et al (2023) Diffusion-based structural connectivity patterns of multiple sclerosis phenotypes. J Neurol Neurosurg Psychiatry 94(11):916–923

    Article  PubMed  Google Scholar 

  21. Rocca MA, Filippi M (2007) Functional MRI in multiple sclerosis. J Neuroimaging 17:36s–41s

    Article  PubMed  Google Scholar 

  22. Ogawa S et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Biswal BB (2012) Resting state fMRI: A personal history. Neuroimage 62(2):938–944

    Article  PubMed  Google Scholar 

  24. Rocca MA et al (2022) Task- and resting-state fMRI studies in multiple sclerosis: from regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin 35:1

  25. Chiaravalloti ND, Genove HM, DeLuca J (2015) Cognitive rehabilitation in multiple sclerosis: the role of plasticity. Front Neurol 6:1

  26. Filippi M, Preziosa P, Rocca MA (2019) Brain mapping in multiple sclerosis: lessons learned about the human brain. Neuroimage 190:32–45

    Article  PubMed  Google Scholar 

  27. Rocca MA et al (2005) Cortical adaptation in patients with MS: a cross-sectional functional MRI study of disease phenotypes. Lancet Neurol 4(10):618–626

    Article  PubMed  Google Scholar 

  28. Rocca MA et al (2015) Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol 14(3):302–317

    Article  PubMed  Google Scholar 

  29. Kister I et al (2013) Natural history of multiple sclerosis symptoms. Int J MS Care 15(3):146–158

    Article  PubMed  PubMed Central  Google Scholar 

  30. Conradsson D et al (2018) Changes in disability in people with multiple sclerosis: a 10-year prospective study. J Neurol 265(1):119–126

    Article  PubMed  Google Scholar 

  31. Holper L et al (2010) Characterization of functioning in multiple sclerosis using the ICF. J Neurol 257(1):103–113

    Article  PubMed  Google Scholar 

  32. Timmermans ST, de Groot V, Beckerman H (2020) Ten-year disease progression in multiple sclerosis: walking declines more rapidly than arm and hand function. Multiple Sclerosis Related Disord 2020:45

  33. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33(11):1444–1452

    Article  CAS  PubMed  Google Scholar 

  34. Hobart JC et al (2003) Measuring the impact of MS on walking ability: the 12-Item MS Walking Scale (MSWS-12). Neurology 60(1):31–36

    Article  CAS  PubMed  Google Scholar 

  35. Fischer JS et al (1999) The multiple sclerosis functional composite measure (MSFC): an integrated approach to MS clinical outcome assessment. National MS society clinical outcomes assessment task force. Mult Scler 5(4):244–250

  36. Langeskov-Christensen D et al (2017) Performed and perceived walking ability in relation to the expanded disability status scale in persons with multiple sclerosis. J Neurol Sci 382:131–136

    Article  CAS  PubMed  Google Scholar 

  37. Polman CH, Rudick RA (2010) The multiple sclerosis functional composite: a clinically meaningful measure of disability. Neurology 74(Suppl 3):S8-15

    PubMed  Google Scholar 

  38. Lamers I et al (2014) Upper limb assessment in multiple sclerosis: a systematic review of outcome measures and their psychometric properties. Arch Phys Med Rehabil 95(6):1184–1200

    Article  PubMed  Google Scholar 

  39. Feys P et al (2017) The Nine-Hole Peg Test as a manual dexterity performance measure for multiple sclerosis. Mult Scler J 23(5):711–720

    Article  Google Scholar 

  40. Kobelt G et al (2017) New insights into the burden and costs of multiple sclerosis in Europe. Mult Scler J 23(8):1123–1136

    Article  Google Scholar 

  41. Kinnett-Hopkins D et al (2017) People with MS are less physically active than healthy controls but as active as those with other chronic diseases: an updated meta-analysis. Multiple Sclerosis Related Disord 13:38–43

    Article  CAS  Google Scholar 

  42. Langeskov-Christensen M et al (2015) Aerobic capacity in persons with multiple sclerosis: a systematic review and meta-analysis. Sports Med 45(6):905–923

    Article  PubMed  Google Scholar 

  43. Proschinger S et al (2022) Fitness, physical activity, and exercise in multiple sclerosis: a systematic review on current evidence for interactions with disease activity and progression. J Neurol 269(6):2922–2940

    Article  PubMed  PubMed Central  Google Scholar 

  44. Motl RW, Sandroff BM, DeLuca J (2016) Exercise training and cognitive rehabilitation: A symbiotic approach for rehabilitating walking and cognitive functions in multiple sclerosis? Neurorehabil Neural Repair 30(6):499–511

    Article  PubMed  Google Scholar 

  45. Block VJ et al (2019) Association of continuous assessment of step count by remote monitoring with disability progression among adults with multiple sclerosis. Jama Network Open 2(3):1

  46. Kalb R et al (2020) Exercise and lifestyle physical activity recommendations for people with multiple sclerosis throughout the disease course. Mult Scler J 26(12):1459–1469

    Article  Google Scholar 

  47. Feys P et al (2019) Effects of an individual 12-week community-located “start-to-run” program on physical capacity, walking, fatigue, cognitive function, brain volumes, and structures in persons with multiple sclerosis. Mult Scler J 25(1):92–103

    Article  Google Scholar 

  48. Stellmann JP et al (2020) Aerobic exercise induces functional and structural reorganization of CNS networks in multiple sclerosis: a randomized controlled trial. Front Hum Neurosci 2020:14

  49. Langeskov-Christensen M et al (2021) Efficacy of high-intensity aerobic exercise on brain MRI measures in multiple sclerosis. Neurology 96(2):e203–e213

    Article  CAS  PubMed  Google Scholar 

  50. Riemenschneider M et al (2022) Investigating the potential disease-modifying and neuroprotective efficacy of exercise therapy early in the disease course of multiple sclerosis: the Early Multiple Sclerosis Exercise Study (EMSES). Mult Scler 28(10):1620–1629

    Article  CAS  PubMed  Google Scholar 

  51. Albergoni M et al (2023) The insula modulates the effects of aerobic training on cardiovascular function and ambulation in multiple sclerosis. J Neurol 270(3):1672–1681

    Article  CAS  PubMed  Google Scholar 

  52. Savšek L et al (2021) Impact of aerobic exercise on clinical and magnetic resonance imaging biomarkers in persons with multiple sclerosis: an exploratory randomized controlled trial. J Rehabil Med 53(4):jrm00178

  53. Leavitt VM et al (2014) Aerobic exercise increases hippocampal volume and improves memory in multiple sclerosis: preliminary findings. Neurocase 20(6):695–697

    Article  CAS  PubMed  Google Scholar 

  54. Sandroff BM et al (2021) Effects of walking exercise training on learning and memory and hippocampal neuroimaging outcomes in MS: a targeted, pilot randomized controlled trial. Contemp Clin Trials 110:1

  55. Tavazzi E et al (2018) Effects of motor rehabilitation on mobility and brain plasticity in multiple sclerosis: a structural and functional MRI study. J Neurol 265(6):1393–1401

    Article  PubMed  Google Scholar 

  56. Mayo CD et al (2021) A pilot study of the impact of an exercise intervention on brain structure, cognition, and psychosocial symptoms in individuals with relapsing-remitting multiple sclerosis. Pilot Feasib Stud 7(1):1

  57. Tilsley P et al (2023) Physical fitness moderates the association between brain network impairment and both motor function and cognition in progressive multiple sclerosis. J Neurol 2023:1

  58. Kjolhede T et al (2018) Can resistance training impact MRI outcomes in relapsing-remitting multiple sclerosis? Mult Scler J 24(10):1356–1365

    Article  Google Scholar 

  59. Prosperini L et al (2014) Multiple sclerosis: changes in microarchitecture of white matter tracts after training with a video game balance board. Radiology 273(2):529–538

    Article  PubMed  Google Scholar 

  60. Ibrahim I et al (2011) Fractional anisotropy and mean diffusivity in the corpus callosum of patients with multiple sclerosis: the effect of physiotherapy. Neuroradiology 53(11):917–926

    Article  PubMed  Google Scholar 

  61. Rasova K et al (2015) Motor programme activating therapy influences adaptive brain functions in multiple sclerosis: clinical and MRI study. Int J Rehabil Res 38(1):49–54

    Article  PubMed  Google Scholar 

  62. Bonzano L et al (2014) Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis. Neuroimage 90:107–116

    Article  PubMed  Google Scholar 

  63. Barghi A et al (2018) Phase II randomized controlled trial of constraint-induced movement therapy in multiple sclerosis. Part 2: effect on white matter integrity. Neurorehab Neural Repair 32(3):233–241

  64. Boffa G et al (2020) Preserved brain functional plasticity after upper limb task-oriented rehabilitation in progressive multiple sclerosis. Eur J Neurol 27(1):77–84

    Article  CAS  PubMed  Google Scholar 

  65. Rocca MA et al (2019) Functional and structural plasticity following action observation training in multiple sclerosis. Mult Scler J 25(11):1472–1487

    Article  Google Scholar 

  66. Sandroff BM et al (2018) Treadmill walking exercise training and brain function in multiple sclerosis: preliminary evidence setting the stage for a network-based approach to rehabilitation. Mult Scler J Exp Transl Clin 4(1):2055217318760641

    PubMed  PubMed Central  Google Scholar 

  67. Androwis GJ et al (2021) A pilot randomized controlled trial of robotic exoskeleton-assisted exercise rehabilitation in multiple sclerosis. Mult Scler Relat Disord 51:102936

    Article  PubMed  Google Scholar 

  68. Huiskamp M et al (2020) A pilot study of the effects of running training on visuospatial memory in MS: a stronger functional embedding of the hippocampus in the default-mode network? Mult Scler J 26(12):1594–1598

    Article  Google Scholar 

  69. Saadat N et al (2021) Functional connectivity pre-post exercise intervention in individuals with relapsing-remitting multiple sclerosis. NeuroReport 32(13):1100–1105

    Article  PubMed  Google Scholar 

  70. Fling BW et al (2019) Neuroplasticity of the sensorimotor neural network associated with walking aid training in people with multiple sclerosis. Multiple Sclerosis Related Disord 31:1–4

    Article  Google Scholar 

  71. Akbar N et al (2020) Progressive resistance exercise training and changes in resting-state functional connectivity of the caudate in persons with multiple sclerosis and severe fatigue: a proof-of-concept study. Neuropsychol Rehabil 30(1):54–66

    Article  PubMed  Google Scholar 

  72. Cordani C et al (2021) Action observation training promotes motor improvement and modulates functional network dynamic connectivity in multiple sclerosis. Mult Scler J 27(1):139–146

    Article  CAS  Google Scholar 

  73. Bonzano L et al (2019) Upper limb motor training based on task-oriented exercises induces functional brain reorganization in patients with multiple sclerosis. Neuroscience 410:150–159

    Article  CAS  PubMed  Google Scholar 

  74. Rasova K et al (2005) Is it possible to actively and purposely make use of plasticity and adaptability in the neurorehabilitation treatment of multiple sclerosis patients? A pilot project. Clin Rehab 19(2):170–181

    Article  CAS  Google Scholar 

  75. Zuber P et al (2020) Efficacy of inpatient personalized multidisciplinary rehabilitation in multiple sclerosis: behavioural and functional imaging results. J Neurol 267(6):1744–1753

    Article  PubMed  Google Scholar 

  76. Sulpizio V et al (2021) Effect of exoskeleton-assisted rehabilitation over prefrontal cortex in multiple sclerosis patients: a neuroimaging pilot study. Brain Topogr 34(5):651–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Prochazkova M et al (2021) Brain activity changes following neuroproprioceptive “facilitation, inhibition” physiotherapy in multiple sclerosis: a parallel group randomized comparison of two approaches. Eur J Phys Rehabil Med 57(3):356–365

    Article  PubMed  Google Scholar 

  78. Benedict RHB et al (2020) Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues. Lancet Neurol 19(10):860–871

    Article  PubMed  PubMed Central  Google Scholar 

  79. Islas MAM, Ciampi E (2019) Assessment and impact of cognitive impairment in multiple sclerosis: an overview. Biomedicines 7(1):1

  80. Sumowski JF et al (2018) Cognition in multiple sclerosis. Neurology 90(6):278–288

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wojcik C et al (2022) Staging and stratifying cognitive dysfunction in multiple sclerosis. Mult Scler 28(3):463–471

    Article  PubMed  Google Scholar 

  82. Johnen A et al (2017) Distinct cognitive impairments in different disease courses of multiple sclerosis—a systematic review and meta-analysis. Neurosci Biobehav Rev 83:568–578

    Article  PubMed  Google Scholar 

  83. Damasceno A et al (2020) Cognitive trajectories in relapsing-remitting multiple sclerosis: a longitudinal 6-year study. Mult Scler J 26(13):1740–1751

    Article  Google Scholar 

  84. Pitteri M et al (2017) Cognitive impairment predicts disability progression and cortical thinning in MS: an 8-year study. Mult Scler J 23(6):848–854

    Article  Google Scholar 

  85. Donaldson E et al (2019) Why sex matters: a cognitive study of people with multiple sclerosis. Cogn Behav Neurol 32(1):39–45

    Article  PubMed  Google Scholar 

  86. Pagnotti RB, Hua LH, Miller JB (2022) Cognition and disease characteristics in adult onset versus late onset multiple sclerosis. Mult Scler J 28(6):933–941

    Article  Google Scholar 

  87. Schoonheim MM et al (2012) Subcortical atrophy and cognition: sex effects in multiple sclerosis. Neurology 79(17):1754–1761

    Article  PubMed  Google Scholar 

  88. Schoonheim MM et al (2014) Sex-specific extent and severity of white matter damage in multiple sclerosis: implications for cognitive decline. Hum Brain Mapp 35(5):2348–2358

    Article  PubMed  Google Scholar 

  89. Tedone N et al (2023) Regional white matter and gray matter damage and cognitive performances in multiple sclerosis according to sex. Mol Psychiatry 28(4):1783–1792

    Article  CAS  PubMed  Google Scholar 

  90. Schoonheim MM et al (2012) Gender-related differences in functional connectivity in multiple sclerosis. Mult Scler J 18(2):164–173

    Article  Google Scholar 

  91. Polliack ML, Barak Y, Achiron A (2001) Late-onset multiple sclerosis. J Am Geriatr Soc 49(2):168–171

    Article  CAS  PubMed  Google Scholar 

  92. Roth AK et al (2018) Cognition in older patients with multiple sclerosis compared to patients with amnestic mild cognitive impairment and healthy older adults. Neuropsychology 32(6):654–663

    Article  PubMed  PubMed Central  Google Scholar 

  93. De Meo E et al (2021) Identifying the distinct cognitive phenotypes in multiple sclerosis. JAMA Neurol 78(4):414–425

    Article  PubMed  Google Scholar 

  94. Hancock LM et al (2023) A proposed new taxonomy of cognitive phenotypes in multiple sclerosis: the international classification of cognitive disorders in MS (IC-CoDiMS). Mult Scler 29(4–5):615–627

    Article  PubMed  Google Scholar 

  95. Mistri D et al (2023) Cognitive phenotypes in multiple sclerosis: mapping the spectrum of impairment. J Neurol 2023:1

  96. Frndak SE et al (2015) Disclosure of disease status among employed multiple sclerosis patients: association with negative work events and accommodations. Mult Scler J 21(2):225–234

    Article  Google Scholar 

  97. Strober L et al (2014) Unemployment in multiple sclerosis (MS): utility of the MS functional composite and cognitive testing. Mult Scler J 20(1):112–115

    Article  Google Scholar 

  98. Yael G, Nancy C, John D (2019) Money management in multiple sclerosis: the role of cognitive, motor, and affective factors. Front Neurol 10:1

  99. Amato M et al (2018) Cognitive assessment in multiple sclerosis—an Italian consensus. Neurol Sci 39(8):1317–1324

    Article  PubMed  Google Scholar 

  100. Kalb R et al (2018) Recommendations for cognitive screening and management in multiple sclerosis care. Mult Scler J 24(13):1665–1680

    Article  Google Scholar 

  101. Amato MP et al (2013) Treatment of cognitive impairment in multiple sclerosis: position paper. J Neurol 260(6):1452–1468

    Article  CAS  PubMed  Google Scholar 

  102. Fink F et al (2010) Efficacy of an executive function intervention programme in MS: a placebo-controlled and pseudo-randomized trial. Mult Scler J 16(9):1148–1151

    Article  Google Scholar 

  103. De Giglio L et al (2016) Corpus callosum microstructural changes associated with Kawashima Nintendo Brain Training in patients with multiple sclerosis. J Neurol Sci 370:211–213

    Article  PubMed  Google Scholar 

  104. Ehling R et al (2019) Second language learning induces grey matter volume increase in people with multiple sclerosis. PLoS ONE 14(12):1

  105. Ernst A et al (2016) Functional and structural cerebral changes in key brain regions after a facilitation programme for episodic future thought in relapsing-remitting multiple sclerosis patients. Brain Cogn 105:34–45

    Article  PubMed  Google Scholar 

  106. Ernst A et al (2018) Benefits from an autobiographical memory facilitation programme in relapsing-remitting multiple sclerosis patients: a clinical and neuroimaging study. Neuropsychol Rehabil 28(7):1110–1130

    Article  PubMed  Google Scholar 

  107. Frieske J et al (2022) Can cognitive training reignite compensatory mechanisms in advanced multiple sclerosis patients? An explorative morphological network approach. Neuroscience 495:86–96

    Article  CAS  PubMed  Google Scholar 

  108. Bonavita S et al (2015) Computer-aided cognitive rehabilitation improves cognitive performances and induces brain functional connectivity changes in relapsing remitting multiple sclerosis patients: an exploratory study. J Neurol 262(1):91–100

    Article  CAS  PubMed  Google Scholar 

  109. Filippi M et al (2012) Multiple sclerosis: effects of cognitive rehabilitation on structural and functional MR imaging measures—an explorative study. Radiology 262(3):932–940

    Article  PubMed  Google Scholar 

  110. Fuchs TA et al (2019) Response heterogeneity to home-based restorative cognitive rehabilitation in multiple sclerosis: an exploratory study. Multiple Sclerosis Related Disord 34:103–111

    Article  Google Scholar 

  111. Fuchs TA et al (2020) Functional connectivity and structural disruption in the default-mode network predicts cognitive rehabilitation outcomes in multiple sclerosis. J Neuroimaging 30(4):523–530

    Article  PubMed  Google Scholar 

  112. Penner I-K, Kappos L, Opwis K (2005) Induced changes in brain activation using a computerized attention training in patients with multiple sclerosis (MS)

  113. Cerasa A et al (2013) Computer-assisted cognitive rehabilitation of attention deficits for multiple sclerosis: a randomized trial with fMRI correlates. Neurorehabil Neural Repair 27(4):284–295

    Article  PubMed  Google Scholar 

  114. Sastre-Garriga J et al (2011) A functional magnetic resonance proof of concept pilot trial of cognitive rehabilitation in multiple sclerosis. Mult Scler J 17(4):457–467

    Article  CAS  Google Scholar 

  115. Pareto D et al (2018) Classic block design “pseudo”-resting-state fMRI changes after a neurorehabilitation program in patients with multiple sclerosis. J Neuroimaging 28(3):313–319

    Article  PubMed  Google Scholar 

  116. Parisi L et al (2014) Cognitive rehabilitation correlates with the functional connectivity of the anterior cingulate cortex in patients with multiple sclerosis. Brain Imaging Behav 8(3):387–393

    Article  PubMed  Google Scholar 

  117. Parisi L et al (2014) Changes of brain resting state functional connectivity predict the persistence of cognitive rehabilitation effects in patients with multiple sclerosis. Mult Scler J 20(6):686–694

    Article  Google Scholar 

  118. De Giglio L et al (2016) Multiple sclerosis: changes in thalamic resting-state functional connectivity induced by a homebased cognitive rehabilitation program. Radiology 280(1):202–211

    Article  PubMed  Google Scholar 

  119. Campbell J et al (2016) A randomised controlled trial of efficacy of cognitive rehabilitation in multiple sclerosis: a cognitive, behavioural, and MRI study. Neural Plast 2016:1

  120. Bonzano L et al (2020) Brain activity pattern changes after adaptive working memory training in multiple sclerosis. Brain Imaging Behav 14(1):142–154

    Article  PubMed  Google Scholar 

  121. Hubacher M et al (2015) Cognitive rehabilitation of working memory in juvenile multiple sclerosis-effects on cognitive functioning, functional MRI and network related connectivity. Restor Neurol Neurosci 33(5):713–725

    PubMed  Google Scholar 

  122. Hubacher M et al (2015) Case-based fMRI analysis after cognitive rehabilitation in MS: a novel approach. Front Neurol 6:1.

  123. Chiaravalloti ND et al (2012) Increased cerebral activation after behavioral treatment for memory deficits in MS. J Neurol 259(7):1337–1346

    Article  PubMed  Google Scholar 

  124. Huiskamp M et al (2016) A pilot study of changes in functional brain activity during a working memory task after mSMT treatment: the MEMREHAB trial. Multiple Sclerosis Related Disord 7:76–82

    Article  CAS  Google Scholar 

  125. Leavitt VM et al (2014) Increased functional connectivity within memory networks following memory rehabilitation in multiple sclerosis. Brain Imaging Behav 8(3):394–402

    Article  PubMed  Google Scholar 

  126. Dobryakova E et al (2014) A pilot study examining functional brain activity 6 months after memory retraining in MS: the MEMREHAB trial. Brain Imaging Behav 8(3):403–406

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ernst A et al (2012) Induced brain plasticity after a facilitation programme for autobiographical memory in multiple sclerosis: a preliminary study. Mult Scler Int 2012:820240

    PubMed  PubMed Central  Google Scholar 

  128. Prouskas SE et al (2022) A randomized trial predicting response to cognitive rehabilitation in multiple sclerosis: Is there a window of opportunity? Mult Scler J 28(13):2124–2136

    Article  Google Scholar 

  129. Ball K et al (2002) Effects of cognitive training interventions with older adults—a randomized controlled trial. JAMA J Am Med Assoc 288(18):2271–2281

    Article  Google Scholar 

  130. Rebok GW et al (2014) Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. J Am Geriatr Soc 62(1):16–24

    Article  PubMed  PubMed Central  Google Scholar 

  131. Liberatore G et al (2014) Predictors of effectiveness of multidisciplinary rehabilitation treatment on motor dysfunction in multiple sclerosis. Mult Scler J 20(7):862–870

    Article  CAS  Google Scholar 

  132. Rademacher A et al (2021) Do baseline cognitive status, participant specific characteristics and EDSS impact changes of cognitive performance following aerobic exercise intervention in multiple sclerosis? Multiple Sclerosis Related Disord 51:102905

    Article  Google Scholar 

  133. Ziccardi S et al (2023) Cognitive phenotypes predict response to restorative cognitive rehabilitation in multiple sclerosis. Mult Scler 2023:13524585231208331

  134. Taylor LA et al (2023) Understanding who benefits most from cognitive rehabilitation for multiple sclerosis: a secondary data analysis. Mult Scler 29(11–12):1482–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Buscarinu MC et al (2022) Late-onset MS: disease course and safety-efficacy of DMTS. Front Neurol 13:829331

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kanzler CM et al (2022) Personalized prediction of rehabilitation outcomes in multiple sclerosis: a proof-of-concept using clinical data, digital health metrics, and machine learning. Med Biol Eng Comput 60(1):249–261

    Article  PubMed  Google Scholar 

  137. Feinstein A et al (2023) Cognitive rehabilitation and aerobic exercise for cognitive impairment in people with progressive multiple sclerosis (CogEx): a randomised, blinded, sham-controlled trial. Lancet Neurol 22(10):912–924

    Article  PubMed  Google Scholar 

  138. Argento O et al (2023) Motor, cognitive, and combined rehabilitation approaches on MS patients’ cognitive impairment. Neurol Sci 44(3):1109–1118

    Article  PubMed  Google Scholar 

  139. Barbarulo AM et al (2018) Integrated cognitive and neuromotor rehabilitation in multiple sclerosis: a pragmatic study. Front Behav Neurosci 12:196

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Rocca.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflicts of interest.

Ethical standards

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocca, M.A., Romanò, F., Tedone, N. et al. Advanced neuroimaging techniques to explore the effects of motor and cognitive rehabilitation in multiple sclerosis. J Neurol (2024). https://doi.org/10.1007/s00415-024-12395-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00415-024-12395-0

Keywords

Navigation