Skip to main content
Log in

The prognostic value of systematic genetic screening in amyotrophic lateral sclerosis patients

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with complex genetic architecture. Emerging evidence has indicated comorbidity between ALS and autoimmune conditions, suggesting a potential shared genetic basis. The objective of this study is to assess the prognostic value of systematic screening for rare deleterious mutations in genes associated with ALS and aberrant inflammatory responses.

Methods

A discovery cohort of 494 patients and a validation cohort of 69 patients were analyzed in this study, with population-matched healthy subjects (n = 4961) served as controls. Whole exome sequencing (WES) was performed to identify rare deleterious variants in 50 ALS genes and 1177 genes associated with abnormal inflammatory responses. Genotype–phenotype correlation was assessed, and an integrative prognostic model incorporating genetic and clinical factors was constructed.

Results

In the discovery cohort, 8.1% of patients carried confirmed ALS variants, and an additional 15.2% of patients carried novel ALS variants. Gene burden analysis revealed 303 immune-implicated genes with enriched rare variants, and 13.4% of patients harbored rare deleterious variants in these genes. Patients with ALS variants exhibited a more rapid disease progression (HR 2.87 [95% CI 2.03–4.07], p < 0.0001), while no significant effect was observed for immune-implicated variants. The nomogram model incorporating genetic and clinical information demonstrated improved accuracy in predicting disease outcomes (C-index, 0.749).

Conclusion

Our findings enhance the comprehension of the genetic basis of ALS within the Chinese population. It also appears that rare deleterious mutations occurring in immune-implicated genes exert minimal influence on the clinical trajectories of ALS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The summary of genetic alterations in ALS patients analyzed during this study is included in the supplementary files and deposited in the Genome Variation Map (GVM) in National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, under accession number GVM000588. Individual-level sequencing data are available from the corresponding authors on reasonable request.

Abbreviations

ACMG:

American College of Medical Genetics and Genomics

ALS:

Amyotrophic lateral sclerosis

ALS-MiToS:

Milano-Torino Staging for Amyotrophic Lateral Sclerosis

ALSFRS-R:

ALS Functional Rating Scale–Revised

BMI:

Body mass index

cGAS-STING:

Cyclic GMP-AMP synthase-stimulator of interferon genes

CI:

Confidence interval

ENCALS:

European Network for the Cure of ALS

fALS:

Familial ALS

FTD:

Frontotemporal dementia

GATK:

Genome analysis toolkits

HR:

Hazard ratio

MAF:

Minor allele frequency

PUMCH:

Peking Union Medical College Hospital

ROADS:

Rasch-Built Overall Amyotrophic Lateral Sclerosis Disability Scale

sALS:

Sporadic ALS

VUS:

Variants of unknown significance

WES:

Whole exome sequencing

References

  1. Swinnen B, Robberecht W (2014) The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol 10:661–670. https://doi.org/10.1038/nrneurol.2014.184

    Article  PubMed  Google Scholar 

  2. Hardiman O, Al-Chalabi A, Chio A et al (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Prim 3:17071. https://doi.org/10.1038/nrdp.2017.71

    Article  PubMed  Google Scholar 

  3. Goutman SA, Hardiman O, Al-Chalabi A et al (2022) Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis. Lancet Neurol 21:480–493. https://doi.org/10.1016/S1474-4422(21)00465-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ying W (2023) Phenomic studies on diseases: potential and challenges. Phenomics 3:285–299. https://doi.org/10.1007/s43657-022-00089-4

    Article  PubMed  PubMed Central  Google Scholar 

  5. Picard M (2022) Why do we care more about disease than health? Phenomics 2:145–155. https://doi.org/10.1007/s43657-021-00037-8

    Article  PubMed  PubMed Central  Google Scholar 

  6. Goutman SA, Hardiman O, Al-Chalabi A et al (2022) Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol 21:465–479. https://doi.org/10.1016/S1474-4422(21)00414-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Al-Chalabi A, Hardiman O (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol 9:617–628. https://doi.org/10.1038/nrneurol.2013.203

    Article  CAS  PubMed  Google Scholar 

  8. He D, Cui L (2021) Assessing the causal role of selenium in amyotrophic lateral sclerosis: a mendelian randomization study. Front Genet 12:1–6. https://doi.org/10.3389/fgene.2021.724903

    Article  ADS  CAS  Google Scholar 

  9. Liu B, Lyu L, Zhou W et al (2023) Associations of the circulating levels of cytokines with risk of amyotrophic lateral sclerosis : a Mendelian randomization study. BMC Med. https://doi.org/10.1186/s12916-023-02736-7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Julian TH, Glascow N, Fisher AD et al (2021) Physical exercise is a risk factor for amyotrophic lateral sclerosis: convergent evidence from Mendelian randomisation, transcriptomics and risk genotypes. EBioMedicine 68:103397. https://doi.org/10.1016/j.ebiom.2021.103397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alipour P, Senkevich K, Ross JP et al (2022) Investigation of the causal relationship between ALS and autoimmune disorders : a Mendelian randomization study. BMC Med. https://doi.org/10.1186/s12916-022-02578-9

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shepheard SR, Parker MD, Cooper-Knock J et al (2021) Value of systematic genetic screening of patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2020-325014

    Article  PubMed  Google Scholar 

  13. Opie-Martin S, Iacoangeli A, Topp SD et al (2022) The SOD1-mediated ALS phenotype shows a decoupling between age of symptom onset and disease duration. Nat Commun 13:1–9. https://doi.org/10.1038/s41467-022-34620-y

    Article  CAS  Google Scholar 

  14. Dong S, Yin X, Wang K et al (2023) Presence of rare variants is associated with poorer survival in chinese patients with amyotrophic lateral sclerosis. Phenomics 3:167–181. https://doi.org/10.1007/s43657-022-00093-8

    Article  CAS  PubMed  Google Scholar 

  15. Chio A, Moglia C, Canosa A et al (2023) Association of copresence of pathogenic variants related to amyotrophic lateral sclerosis and prognosis. Neurology. https://doi.org/10.1212/WNL.0000000000207367.10.1212/WNL.0000000000207367

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chia R, Chiò A, Traynor BJ (2018) Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol 17:94–102. https://doi.org/10.1016/S1474-4422(17)30401-5

    Article  CAS  PubMed  Google Scholar 

  17. Saez-Atienzar S, Bandres-Ciga S, Langston RG et al (2021) Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types. Sci Adv 7:1–14. https://doi.org/10.1126/sciadv.abd9036

    Article  CAS  Google Scholar 

  18. Feldman EL, Goutman SA, Petri S et al (2022) Amyotrophic lateral sclerosis. Lancet 400:1363–1380. https://doi.org/10.1016/S0140-6736(22)01272-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Coque E, Salsac C, Espinosa-Carrasco G et al (2019) Cytotoxic CD8 + T lymphocytes expressing ALS-causing SOD1 mutant selectively trigger death of spinal motoneurons. Proc Natl Acad Sci U S A 116:2312–2317. https://doi.org/10.1073/pnas.1815961116

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu CH, Davidson S, Harapas CR et al (2020) TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell 183:636-649.e18. https://doi.org/10.1016/j.cell.2020.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McCauley ME, O’Rourke JG, Yáñez A et al (2020) C9orf72 in myeloid cells suppresses STING-induced inflammation. Nature 585:96–101. https://doi.org/10.1038/s41586-020-2625-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wei Q, Chen Y, Chen X et al (2018) Prognostic nomogram associated with longer survival in amyotrophic lateral sclerosis patients. Aging Dis. 9:965. https://doi.org/10.14336/AD.2017.1016

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu L, Zhu S (2021) computational methods for prediction of human protein-phenotype associations: a review. Phenomics 1:171–185. https://doi.org/10.1007/s43657-021-00019-w

    Article  PubMed  PubMed Central  Google Scholar 

  24. Westeneng HJ, Debray TPA, Visser AE et al (2018) Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. Lancet Neurol 17:423–433. https://doi.org/10.1016/S1474-4422(18)30089-9

    Article  PubMed  Google Scholar 

  25. Shen D, Cui B, Liu M et al (2020) Strategy for screening cognitive impairment in Chinese patients with amyotrophic lateral sclerosis. J Clin Neurosci 81:105–110. https://doi.org/10.1016/j.jocn.2020.09.016

    Article  PubMed  Google Scholar 

  26. Hao M, Pu W, Li Y et al (2021) The HuaBiao project: whole-exome sequencing of 5000 Han Chinese individuals. J Genet Genomics 48:1032–1035. https://doi.org/10.1016/j.jgg.2021.07.013

    Article  PubMed  Google Scholar 

  27. He D, Shang L, Liu Q et al (2021) Association of apolipoprotein E ε4 allele and amyotrophic lateral sclerosis in Chinese population. Amyotroph Lateral Scler Front Degener. https://doi.org/10.1080/21678421.2021.1953077

    Article  Google Scholar 

  28. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li Q, Wang K (2017) InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. Am J Hum Genet 100:267–280. https://doi.org/10.1016/j.ajhg.2017.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jagadeesh KA, Wenger AM, Berger MJ et al (2016) M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat Genet 48:1581–1586. https://doi.org/10.1038/ng.3703

    Article  CAS  PubMed  Google Scholar 

  31. Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) Mutationtaster2: mutation prediction for the deep-sequencing age. Nat Methods 11:361–362. https://doi.org/10.1038/nmeth.2890

    Article  CAS  PubMed  Google Scholar 

  32. Ioannidis NM, Rothstein JH, Pejaver V et al (2016) REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet 99:877–885. https://doi.org/10.1016/j.ajhg.2016.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Glass JD, Dewan R, Ding J et al (2022) ATXN2 intermediate expansions in amyotrophic lateral sclerosis. Brain 145:2671–2676. https://doi.org/10.1093/brain/awac167

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu MC, Lee S, Cai T et al (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89:82–93. https://doi.org/10.1016/j.ajhg.2011.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen YP, Yu SH, Wei QQ et al (2022) Role of genetics in amyotrophic lateral sclerosis: a large cohort study in Chinese mainland population. J Med Genet 59:840–849. https://doi.org/10.1136/jmedgenet-2021-107965

    Article  CAS  PubMed  Google Scholar 

  36. Chen W, Xie Y, Zheng M et al (2020) Clinical and genetic features of patients with amyotrophic lateral sclerosis in southern China. Eur J Neurol 27:1017–1022. https://doi.org/10.1111/ene.14213

    Article  CAS  PubMed  Google Scholar 

  37. Liu ZJ, Lin HX, Wei Q et al (2019) Genetic spectrum and variability in Chinese patients with amyotrophic lateral sclerosis. Aging Dis. 10:1199–1206. https://doi.org/10.14336/AD.2019.0215

    Article  PubMed  PubMed Central  Google Scholar 

  38. Van Rheenen W, Shatunov A, Dekker AM et al (2016) Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat Genet 48:1043–1048. https://doi.org/10.1038/ng.3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim G, Gautier O, Tassoni-Tsuchida E et al (2020) ALS genetics: gains, losses, and implications for future therapies. Neuron. https://doi.org/10.1016/j.neuron.2020.08.022

    Article  PubMed  PubMed Central  Google Scholar 

  40. van Es MA, Hardiman O, Chio A et al (2017) Amyotrophic lateral sclerosis. Lancet 390:2084–2098. https://doi.org/10.1016/S0140-6736(17)31287-4

    Article  PubMed  Google Scholar 

  41. Grassano M, Calvo A, Moglia C et al (2021) Mutational analysis of known ALS genes in an Italian population-based cohort. Neurology 96:e600–e609. https://doi.org/10.1212/WNL.0000000000011209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Grassano M, Calvo A, Moglia C et al (2022) Systematic evaluation of genetic mutations in ALS: A population-based study. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2022-328931

    Article  PubMed  Google Scholar 

  43. McCann EP, Henden L, Fifita JA et al (2021) Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis. J Med Genet 58:87–95. https://doi.org/10.1136/jmedgenet-2020-106866

    Article  CAS  Google Scholar 

  44. Al-Chalabi A, Calvo A, Chio A et al (2014) Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study. Lancet Neurol 13:1108–1113. https://doi.org/10.1016/S1474-4422(14)70219-4

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li C, Ji Y, Tang L et al (2015) Optineurin mutations in patients with sporadic amyotrophic lateral sclerosis in China. Amyotroph Lateral Scler Front Degener 16:485–489. https://doi.org/10.3109/21678421.2015.1089909

    Article  CAS  Google Scholar 

  46. Van Blitterswijk M, Van Es MA, Hennekam EAM et al (2012) Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet 21:3776–3784. https://doi.org/10.1093/hmg/dds199

    Article  CAS  PubMed  Google Scholar 

  47. Bali T, Self W, Liu J et al (2017) Defining SOD1 ALS natural history to guide therapeutic clinical trial design. J Neurol Neurosurg Psychiatry 88:99–105. https://doi.org/10.1136/jnnp-2016-313521

    Article  PubMed  Google Scholar 

  48. Mccauley ME, Baloh RH (2019) Inflammation in ALS/FTD pathogenesis. Acta Neuropathol 137:715–730. https://doi.org/10.1007/s00401-018-1933-9

    Article  CAS  PubMed  Google Scholar 

  49. He D, Xu Y, Liu M, Cui L (2023) The inflammatory puzzle: piecing together the links between neuroinflammation and amyotrophic lateral sclerosis. Aging Dis. https://doi.org/10.14336/AD.2023.0519

    Article  PubMed  PubMed Central  Google Scholar 

  50. Beers DR, Zhao W, Wang J et al (2017) ALS patients’ regulatory T lymphocytes are dysfunctional, and correlate with disease progression rate and severity. JCI Insight 2:1–14. https://doi.org/10.1172/jci.insight.89530

    Article  Google Scholar 

  51. Murdock BJ, Zhou T, Kashlan SR et al (2017) Correlation of peripheral immunity with rapid amyotrophic lateral sclerosis progression. JAMA Neurol 74:1446. https://doi.org/10.1001/jamaneurol.2017.2255

    Article  PubMed  PubMed Central  Google Scholar 

  52. Turner MR, Goldacre R, Ramagopalan S et al (2013) Autoimmune disease preceding amyotrophic lateral sclerosis: an epidemiologic study. Neurology 81:1222–1225. https://doi.org/10.1212/WNL.0b013e3182a6cc13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chiot A, Zaïdi S, Iltis C et al (2020) Modifying macrophages at the periphery has the capacity to change microglial reactivity and to extend ALS survival. Nat Neurosci 23:1339–1351. https://doi.org/10.1038/s41593-020-00718-z

    Article  CAS  PubMed  Google Scholar 

  54. Sheean RK, McKay FC, Cretney E et al (2018) Association of regulatory T-Cell expansion with progression of amyotrophic lateral sclerosis a study of humans and a transgenic mouse model. JAMA Neurol 75:681–689. https://doi.org/10.1001/jamaneurol.2018.0035

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fournier CN, Bedlack R, Quinn C et al (2020) Development and validation of the Rasch-Built Overall Amyotrophic Lateral Sclerosis Disability Scale (ROADS). JAMA Neurol 77:480–488. https://doi.org/10.1001/jamaneurol.2019.4490

    Article  PubMed  Google Scholar 

  56. Roche JC, Rojas-Garcia R, Scott KM et al (2012) A proposed staging system for amyotrophic lateral sclerosis. Brain 135:847–852. https://doi.org/10.1093/brain/awr351

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chiò A, Hammond ER, Mora G et al (2015) Development and evaluation of a clinical staging system for amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 86:38–44. https://doi.org/10.1136/jnnp-2013-306589

    Article  PubMed  Google Scholar 

  58. Rooney J, Burke T, Vajda A et al (2017) What does the ALSFRS-R really measure? A longitudinal and survival analysis of functional dimension subscores in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 88:381–385. https://doi.org/10.1136/jnnp-2016-314661

    Article  PubMed  Google Scholar 

  59. Lek M, Karczewski KJ, Minikel EV et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291. https://doi.org/10.1038/nature19057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the kind support from the patients and their families for their participation in this study. They also thank Beijing Grandomics Biosciences Co Ltd. for coding support.

Funding

This work was supported by the Strategic Priority Research Program (Pilot study) “Biological basis of aging and therapeutic strategies” of the Chinese Academy of Sciences (Grant number: XDB39040000), CAMS Innovation Fund for Medical Sciences (2021-I2M-1–003, 2019-I2M-5-066), National Science Foundation of China (32288101, 32200536, 82371431), Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), and 2020 Medical Service and Support Capacity Improvement Project: Construction of the Cohort-Based Multidisciplinary Accurate Diagnosis and Treatment Platform for Neurological Autoimmune and Infectious Diseases.

Author information

Authors and Affiliations

Authors

Contributions

DH and LC: contributed to study concept and design. All the authors performed acquisition, analysis, or interpretation of data. DH: drafted the manuscript. All the authors were involved in critical revision of the manuscript for important intellectual content. DH, YL, and SD: performed statistical analysis. LC, XC, and JW obtained funding. LC, XC, and JW: supervised the study.

Corresponding authors

Correspondence to Jiucun Wang, Xiangjun Chen or Liying Cui.

Ethics declarations

Conflict of interest

There is no conflict of interest to be disclosed.

Ethical approval and consent to participate

Ethical approval for this study was obtained from the PUMCH Research Ethical Boards (No. JS-2624). All participants have provided written consent or given permission for a relative to sign on their behalf.

Declaration of generative AI and AI-assisted technologies in the writing process

No generative AI or AI-assisted technologies have been used in the writing process.

Supplementary Information

Below is the link to the electronic supplementary material.

415_2023_12079_MOESM1_ESM.xlsx

Supplementary Table S1. ALS-implicated gene panel (HP:0007354). Table S2. Immune-implicated gene panel (HP:0012647). Table S3. List of identified rare deleterious ALS variants in the discovery cohort. Table S4. List of immune-implicated genes with enriched rare variants by SKAT analysis after Bonferroni correction. Table S5. List of identified rare deleterious immune variants in the discovery cohort. Table S6. List of identified rare deleterious immune variants in the validation cohort. Table S7. List of identified rare deleterious immune variants in the validation cohort. file1 (XLSX 2651 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, D., Liu, Y., Dong, S. et al. The prognostic value of systematic genetic screening in amyotrophic lateral sclerosis patients. J Neurol 271, 1385–1396 (2024). https://doi.org/10.1007/s00415-023-12079-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-023-12079-1

Keywords

Navigation