Skip to main content

Advertisement

Log in

Physical activity as risk factor in amyotrophic lateral sclerosis: a systematic review and meta-analysis

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Objective

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with rapid progression and high mortality. Physical activity (PA) has been identified as a major risk factor for ALS. However, the results across studies are still controversial. We aimed to explore the association between different types of PA and ALS.

Methods

The PubMed, EMBASE, Cochrane and Web of Science databases were systematically searched for case–control and cohort studies which explored the relationship between PA and ALS from inception to October 2022. The data were analyzed to generate a pooled effect and 95% confidence interval (CI).

Results

A total of 16,686 articles were included in the systematic search. After filtering, 28 studies from online database and 6 studies from references of relevant articles remained in the analysis. Individuals with a history of vigorous physical activity (OR 1.26, 95% CI 1.06–1.49), occupational-related activity (OR 1.14, 95% CI 1.04–1.25), leisure time activity (OR 1.08, 95% CI 1.04–1.12), unclassified PA (OR 1.05 95% CI 1.02–1.09) and professional athletes (SMR 5.23, 95% CI 2.67–10.25; SIR 2.54, 95% CI 1.37–4.69) were in higher risk of developing ALS. In contrast, sport-related activity (OR 0.97, 95% CI 0.76–1.26) was not associated with ALS.

Conclusions

Vigorous physical activity, occupational-related activity, leisure time activity, unclassified PA and professional athletes were associated with a higher risk of ALS, while sport-related activity showed no association with ALS. Our findings clarified the relation between different types of PA and ALS and provided some practicable advice for the lifestyle of high-risk populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data analyzed during this study are included in supplementary materials.

Abbreviations

ALS:

Amyotrophic lateral sclerosis

MND:

Motor neuron disease

PA:

Physical activity

MOOSE:

Meta-analysis of Observational Studies in Epidemiology

PRISMA:

Preferred Reporting Item for Systematic Review and Meta-analysis (2020) guideline

OR:

Odds ratio

HR:

Hazard ratio

CI:

Confidence intervals

SMR:

Standardized mortality rate

SIR:

Standardized incidence rate

NOS:

Newcastle–Ottawa Scale

CoPAs:

Compendium of Physical Activities

MET:

Metabolic equivalents

VPA:

Vigorous physical activity

SE:

Standard error

BMI:

Body mass index

MR:

Mendelian randomization

SOD1:

Superoxide dismutase 1

References

  1. Brownell B, Oppenheimer DR, Hughes JT (1970) The central nervous system in motor neurone disease. J Neurol Neurosurg Psychiatry 33(3):338–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O et al (2011) Amyotrophic lateral sclerosis. Lancet 377(9769):942–955

    Article  CAS  PubMed  Google Scholar 

  3. Brown RH, Al-Chalabi A (2017) Amyotrophic lateral sclerosis. N Engl J Med 377(2):162–172

    Article  CAS  PubMed  Google Scholar 

  4. Jaiswal MK (2019) Riluzole and edaravone: a tale of two amyotrophic lateral sclerosis drugs. Med Res Rev 39(2):733–748

    Article  PubMed  Google Scholar 

  5. Barp A, Gerardi F, Lizio A, Sansone VA, Lunetta C (2020) Emerging drugs for the treatment of amyotrophic lateral sclerosis: a focus on recent phase 2 trials. Expert Opin Emerg Drugs 25(2):145–164

    Article  CAS  PubMed  Google Scholar 

  6. Larson TC, Kaye W, Mehta P, Horton DK (2018) Amyotrophic lateral sclerosis mortality in the United States, 2011–2014. Neuroepidemiology 51(1–2):96–103

    Article  PubMed  Google Scholar 

  7. Al-Chalabi A, Hardiman O (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol 9(11):617–628

    Article  CAS  PubMed  Google Scholar 

  8. Nelson LN (1995) Epidemiology of ALS. Clin Neurosci 3(6):327–331

    PubMed  Google Scholar 

  9. Talbott EO, Malek AM, Lacomis D (2016) The epidemiology of amyotrophic lateral sclerosis. Handb Clin Neurol 138:225–238

    Article  CAS  PubMed  Google Scholar 

  10. Breland AE Jr, Currier RD (1967) Multiple sclerosis and amyotrophic lateral sclerosis in mississippi. Neurology 17(10):1011–1016

    Article  PubMed  Google Scholar 

  11. Lacorte E, Ferrigno L, Leoncini E, Corbo M, Boccia S, Vanacore N (2016) Physical activity, and physical activity related to sports, leisure and occupational activity as risk factors for ALS: a systematic review. Neurosci Biobehav Rev 66:61–79

    Article  PubMed  Google Scholar 

  12. Savettieri G, Salemi G, Arcara A, Cassata M, Castiglione MG, Fierro B (1991) A case-control study of amyotrophic lateral sclerosis. Neuroepidemiology 10(5–6):242–245

    Article  CAS  PubMed  Google Scholar 

  13. Strickland D, Smith SA, Dolliff G, Goldman L, Roelofs RI (1996) Physical activity, trauma, and ALS: a case-control study. Acta Neurol Scand 94(1):45–50

    Article  CAS  PubMed  Google Scholar 

  14. Beghi E, Logroscino G, Chiò A, Hardiman O, Millul A, Mitchell D et al (2010) Amyotrophic lateral sclerosis, physical exercise, trauma and sports: results of a population-based pilot case-control study. Amyotroph Lateral Scler 11(3):289–292

    Article  PubMed  PubMed Central  Google Scholar 

  15. Eaglehouse YL, Talbott EO, Chang Y, Kuller LH (2016) Participation in physical activity and risk for amyotrophic lateral sclerosis mortality among postmenopausal women. JAMA Neurol 73(3):329–336

    Article  PubMed  PubMed Central  Google Scholar 

  16. Visser AE, Rooney JPK, D’Ovidio F, Westeneng HJ, Vermeulen RCH, Beghi E et al (2018) Multicentre, cross-cultural, population-based, case-control study of physical activity as risk factor for amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 89(8):797–803

    Article  PubMed  Google Scholar 

  17. Farrugia Wismayer M, Borg R, Farrugia Wismayer A, Bonavia K, Vella M, Pace A et al (2021) Occupation and amyotrophic lateral sclerosis risk: a case-control study in the isolated island population of Malta. Amyotroph Lateral Scler Frontotemporal Degener 22(7–8):528–534

    Article  CAS  PubMed  Google Scholar 

  18. Chen GX, Douwes J, van den Berg LH, Glass B, McLean D, t Mannetje AM. (2022) Sports and trauma as risk factors for motor neurone disease: New Zealand case-control study. Acta Neurol Scand. 145(6):770–85

  19. Gunnarsson LG, Bodin L, Söderfeldt B, Axelson O (1992) A case-control study of motor neurone disease: its relation to heritability, and occupational exposures, particularly to solvents. Br J Ind Med 49(11):791–798

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pupillo E, Messina P, Giussani G, Logroscino G, Zoccolella S, Chiò A et al (2014) Physical activity and amyotrophic lateral sclerosis: a European population-based case-control study. Ann Neurol 75(5):708–716

    Article  PubMed  Google Scholar 

  21. Gallo V, Vanacore N, Bueno-de-Mesquita HB, Vermeulen R, Brayne C, Pearce N et al (2016) Physical activity and risk of amyotrophic lateral sclerosis in a prospective cohort study. Eur J Epidemiol 31(3):255–266

    Article  PubMed  PubMed Central  Google Scholar 

  22. Valenti M, Pontieri FE, Conti F, Altobelli E, Manzoni T, Frati L (2005) Amyotrophic lateral sclerosis and sports: a case-control study. Eur J Neurol 12(3):223–225

    Article  CAS  PubMed  Google Scholar 

  23. Veldink JH, Kalmijn S, Groeneveld GJ, Titulaer MJ, Wokke JHJ, Van Den Berg LH (2005) Physical activity and the association with sporadic ALS. Neurology 64(2):241–245

    Article  CAS  PubMed  Google Scholar 

  24. Vanacore N, Cocco P, Fadda D, Dosemeci M (2010) Job strain, hypoxia and risk of amyotrophic lateral sclerosis: results from a death certificate study. Amyotroph Lateral Scler 11(5):430–434

    Article  PubMed  Google Scholar 

  25. Korner S, Kammeyer J, Zapf A, Kuzma-Kozakiewicz M, Piotrkiewicz M, Kuraszkiewicz B et al (2019) Influence of environment and lifestyle on incidence and progress of amyotrophic lateral sclerosis in a German ALS population. Aging Dis 10(2):205–216

    Article  PubMed  PubMed Central  Google Scholar 

  26. Filippini T, Fiore M, Tesauro M, Malagoli C, Consonni M, Violi F et al (2020) Clinical and lifestyle factors and risk of amyotrophic lateral sclerosis: a population-based case-control study. Int J Env Res Public Health 17(3):857

    Article  Google Scholar 

  27. Huisman MHB, Seelen M, De Jong SW, Dorresteijn KRIS, Van Doormaal PTC, Van Der Kooi AJ et al (2013) Lifetime physical activity and the risk of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 84(9):976–981

    Article  PubMed  Google Scholar 

  28. Lian L, Liu M, Cui L, Guan Y, Liu T, Cui B et al (2019) Environmental risk factors and amyotrophic lateral sclerosis (ALS): a case-control study of ALS in China. J Clin Neurosci 66:12–18

    Article  PubMed  Google Scholar 

  29. Belli S, Vanacore N (2005) Proportionate mortality of Italian soccer players: is amyotrophic lateral sclerosis an occupational disease? Eur J Epidemiol 20(3):237–242

    Article  PubMed  Google Scholar 

  30. Taioli E (2007) All causes mortality in male professional soccer players. Eur J Pub Health 17(6):600–604

    Article  Google Scholar 

  31. Chio A, Calvo A, Dossena M, Ghiglione P, Mutani R, Mora G (2009) ALS in Italian professional soccer players: the risk is still present and could be soccer-specific. Amyotroph Lateral Scler 10(4):205–209

    Article  PubMed  Google Scholar 

  32. Lehman EJ, Hein MJ, Baron SL, Gersic CM (2012) Neurodegenerative causes of death among retired National football league players. Neurology 79(19):1970–1974

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pupillo E, Bianchi E, Vanacore N, Montalto C, Ricca G, Della Cuna FSR et al (2020) Increased risk and early onset of ALS in professional players from Italian soccer teams. Amyotroph Lateral Sclerosis Frontotemporal Degener 21(5–6):403–409

    Article  Google Scholar 

  34. Daneshvar DH, Mez J, Alosco ML, Baucom ZH, Mahar I, Baugh CM et al (2021) Incidence of and mortality from amyotrophic lateral sclerosis in National football league athletes. JAMA Netw Open 4(12):e2138801

    Article  PubMed  PubMed Central  Google Scholar 

  35. Harwood CA, Westgate K, Gunstone S, Brage S, Wareham NJ, McDermott CJ et al (2016) Long-term physical activity: an exogenous risk factor for sporadic amyotrophic lateral sclerosis? Amyotroph Lateral Scler Frontotemporal Degener 17(5–6):377–384

    Article  PubMed  PubMed Central  Google Scholar 

  36. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ainsworth BE, Haskell WL, Leon AS, Jacobs DR Jr, Montoye HJ, Sallis JF et al (1993) Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc 25(1):71–80

    Article  CAS  PubMed  Google Scholar 

  38. Julious SA, Nicholl J, George S (2001) Why do we continue to use standardized mortality ratios for small area comparisons? J Public Health Med 23(1):40–46

    Article  CAS  PubMed  Google Scholar 

  39. Vujic I, Gandini S, Stanganelli I, Fierro MT, Rappersberger K, Sibilia M et al (2020) A meta-analysis of melanoma risk in industrial workers. Melanoma Res 30(3):286–296

    Article  PubMed  Google Scholar 

  40. Hartung J, Knapp G (2001) On tests of the overall treatment effect in meta-analysis with normally distributed responses. Stat Med 20(12):1771–1782

    Article  CAS  PubMed  Google Scholar 

  41. Hartung J, Knapp G (2001) A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat Med 20(24):3875–3889

    Article  CAS  PubMed  Google Scholar 

  42. Felmus MT, Patten BM, Swanke L (1976) Antecedent events in amyotrophic lateral sclerosis. Neurology 26(2):167–172

    Article  CAS  PubMed  Google Scholar 

  43. Provinciali L, Giovagnoli AR (1990) Antecedent events in amyotrophic lateral sclerosis: do they influence clinical onset and progression? Neuroepidemiology 9(5):255–262

    Article  CAS  PubMed  Google Scholar 

  44. Longstreth WT Jr, McGuire V, Koepsell TD, Wang Y, Van Belle G (1998) Risk of amyotrophic lateral sclerosis and history of physical activity: a population-based case-control study. Arch Neurol 55(2):201–206

    Article  CAS  PubMed  Google Scholar 

  45. Okamoto K, Kihira T, Kondo T, Kobashi G, Washio M, Sasaki S et al (2009) Lifestyle factors and risk of amyotrophic lateral sclerosis: a case-control study in Japan. Ann Epidemiol 19(6):359–364

    Article  PubMed  Google Scholar 

  46. Yu Y, Su F-C, Callaghan BC, Goutman SA, Batterman SA, Feldman EL (2014) Environmental risk factors and amyotrophic lateral sclerosis (ALS): a case-control study of ALS in michigan. PLoS ONE 9(6):e101186

    Article  PubMed  PubMed Central  Google Scholar 

  47. Diekmann K, Kuzma-Kozakiewicz M, Piotrkiewicz M, Gromicho M, Grosskreutz J, Andersen PM et al (2020) Impact of comorbidities and co-medication on disease onset and progression in a large German ALS patient group. J Neurol 267(7):2130–2141

    Article  PubMed  Google Scholar 

  48. Rosenbohm A, Peter R, Dorst J, Kassubek J, Rothenbacher D, Nagel G et al (2021) Life course of physical activity and risk and prognosis of amyotrophic lateral sclerosis in a German ALS registry. Neurology 97(19):E1955–E1963

    Article  CAS  PubMed  Google Scholar 

  49. Phelps A, Alosco ML, Baucom Z, Hartlage K, Palmisano JN, Weuve J et al (2022) Association of playing college American football with long-term health outcomes and mortality. JAMA Netw Open 5(4):E228775

    Article  PubMed  PubMed Central  Google Scholar 

  50. Orhant E, Carling C, Chapellier J-F, Marchand J-L, Pradat P-F, Elbaz A et al (2022) A retrospective analysis of all-cause and cause-specific mortality rates in French male professional footballers. Scand J Med Sci Sports 32(9):1389–1399

    Article  PubMed  Google Scholar 

  51. Savica R, Parisi JE, Wold LE, Josephs KA, Ahlskog JE (2012) High school football and risk of neurodegeneration: a community-based study. Mayo Clin Proc 87(4):335–340

    Article  PubMed  PubMed Central  Google Scholar 

  52. Russell ER, Mackay DF, Stewart K, MacLean JA, Pell JP, Stewart W (2021) Association of field position and career length with risk of neurodegenerative disease in male former professional soccer players. JAMA Neurol 78(9):1057–1063

    Article  PubMed  Google Scholar 

  53. Fang F, Hållmarker U, James S, Ingre C, Michaëlsson K, Ahlbom A, et al. (2016) Amyotrophic lateral sclerosis among cross-country skiers in Sweden. Eur J Epidemiol 31(3):247-253

    Article  PubMed  Google Scholar 

  54. Armon C (2003) An evidence-based medicine approach to the evaluation of the role of exogenous risk factors in sporadic amyotrophic lateral sclerosis. Neuroepidemiology 22(4):217–228

    Article  PubMed  Google Scholar 

  55. Harwood CA, McDermott CJ, Shaw PJ (2009) Physical activity as an exogenous risk factor in motor neuron disease (MND): a review of the evidence. Amyotroph Lateral Scler 10(4):191–204

    Article  PubMed  Google Scholar 

  56. Hamidou B, Couratier P, Besançon C, Nicol M, Preux PM, Marin B (2014) Epidemiological evidence that physical activity is not a risk factor for ALS. Eur J Epidemiol 29(7):459–475

    Article  PubMed  Google Scholar 

  57. Wang MD, Little J, Gomes J, Cashman NR, Krewski D (2017) Identification of risk factors associated with onset and progression of amyotrophic lateral sclerosis using systematic review and meta-analysis. Neurotoxicology 61:101–130

    Article  CAS  PubMed  Google Scholar 

  58. Narita Y (2019) A brief review on recent epidemiologic literature and risk factors of amyotrophic lateral sclerosis. Brain Nerve = Shinkei Kenkyu no Shinpo 71(11):1129–1137

    CAS  PubMed  Google Scholar 

  59. Ingre C, Roos PM, Piehl F, Kamel F, Fang F (2015) Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol 7:181–193

    PubMed  PubMed Central  Google Scholar 

  60. Gunnarsson L-G, Bodin L (2018) Amyotrophic lateral sclerosis and occupational exposures: a systematic literature review and meta-analyses. Int J Env Res Public Health 15(11):2371

    Article  Google Scholar 

  61. Westeneng H-J, van Veenhuijzen K, van der Spek RA, Peters S, Visser AE, van Rheenen W et al (2021) Associations between lifestyle and amyotrophic lateral sclerosis stratified by C9orf72 genotype: a longitudinal, population-based, case-control study. Lancet Neurol 20(5):373–384

    Article  CAS  PubMed  Google Scholar 

  62. Kirkinezos IG, Hernandez D, Bradley WG, Moraes CT (2003) Regular exercise is beneficial to a mouse model of amyotrophic lateral sclerosis. Ann Neurol 53(6):804–807

    Article  PubMed  Google Scholar 

  63. Liebetanz D, Hagemann K, von Lewinski F, Kahler E, Paulus W (2004) Extensive exercise is not harmful in amyotrophic lateral sclerosis. Eur J Neurosci 20(11):3115–3120

    Article  PubMed  Google Scholar 

  64. Carreras I, Yuruker S, Aytan N, Hossain L, Choi J-K, Jenkins BG et al (2010) Moderate exercise delays the motor performance decline in a transgenic model of ALS. Brain Res 1313:192–201

    Article  CAS  PubMed  Google Scholar 

  65. Bandres-Ciga S, Noyce AJ, Hemani G, Nicolas A, Calvo A, Mora G et al (2019) Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Ann Neurol 85(4):470–481

    Article  PubMed  PubMed Central  Google Scholar 

  66. Julian TH, Glascow N, Barry ADF, Moll T, Harvey C, Klimentidis YC et al (2021) Physical exercise is a risk factor for amyotrophic lateral sclerosis: convergent evidence from mendelian randomisation, transcriptomics and risk genotypes. EBioMedicine 68:103397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu P-F, Lu H, Zhou X, Liang X, Li R, Zhang W et al (2021) Assessment of causal effects of physical activity on neurodegenerative diseases: a Mendelian randomization study. J Sport Health Sci 10(4):454–461

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhang G, Zhang L, Tang L, Xia K, Huang T, Fan D (2021) Physical activity and amyotrophic lateral sclerosis: a mendelian randomization study. Neurobiol Aging 105:374.e1-e4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all authors of the original research studies included in the meta-analysis.

Funding

This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFC2501203 and 2021YFC2501205), the Sichuan Science and Technology Program (Grant No. 2022ZDZX0023 and 2020YJ0457).

Author information

Authors and Affiliations

Authors

Contributions

XZ, CL and HS conceived and designed the study. XZ and SW selected studies, collected data and quality assessment. JH and CL cross-checked the data and quality assessment. XZ, SW and JH contributed to the statistical analysis. XZ wrote the first manuscript draft. XZ, SW, JL, TY, YX, QJ revised the manuscript.

Corresponding authors

Correspondence to Chunyu Li or Huifang Shang.

Ethics declarations

Conflict of interest

None declared.

Ethical approval and consent to participate

Not applicable.

Informed consent

Not required.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1828 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Wang, S., Huang, J. et al. Physical activity as risk factor in amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol 270, 2438–2450 (2023). https://doi.org/10.1007/s00415-022-11555-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-022-11555-4

Keywords

Navigation