Abstract
Background
Identifying high-risk intracranial plaques is significant for the treatment and prevention of stroke.
Objective
To develop a high-risk plaque model using three-dimensional (3D) high-resolution magnetic resonance imaging (HRMRI) based radiomics features and machine learning.
Methods
136 patients with documented symptomatic intracranial artery stenosis and available HRMRI data were included. Among these patients, 136 and 92 plaques were identified as symptomatic and asymptomatic plaques, respectively. A conventional model was developed by recording and quantifying the radiological plaque characteristics. Radiomics features from T1-weighted images (T1WI) and contrast-enhanced T1WI (CE-T1WI) were used to construct a high-risk plaque model with linear support vector classification (linear SVC). The radiological and radiomics features were combined to build a combined model. Receiver operating characteristic (ROC) curves were used to evaluate these models.
Results
Plaque length, burden, and enhancement were independently associated with clinical symptoms and were included in the conventional model, which had an AUC of 0.853 vs. 0.837 in the training and test sets. While the radiomics and the combined model showed an improved AUC: 0.923 vs. 0.925 for the training sets and 0.906 vs. 0.903 in the test sets. Both the radiomics model (p = 0.024, p = 0.018) and combined model (p = 0.042, p = 0.049) outperformed the conventional model in the two sets, whereas the performance of the combined model was not significantly different from that of the radiomics model in the two sets (p = 0.583 and p = 0.606).
Conclusion
The radiomics model based on 3D HRMRI can accurately differentiate symptomatic from asymptomatic intracranial arterial plaques and significantly outperforms the conventional model.
This is a preview of subscription content, access via your institution.




References
Qureshi AI, Caplan LR (2014) Intracranial atherosclerosis. The Lancet 383(9921):984–998. https://doi.org/10.1016/S0140-6736(13)61088-0
Flusty B, de Havenon A, Prabhakaran S, Liebeskind DS, Yaghi S (2020) Intracranial atherosclerosis treatment: past, present, and future. Stroke 51(3):e49–e53. https://doi.org/10.1161/STROKEAHA.119.028528
Mazighi M, Labreuche J, Gongora-Rivera F, Duyckaerts C, Hauw JJ, Amarenco P (2008) Autopsy prevalence of intracranial atherosclerosis in patients with fatal stroke. Stroke 39(4):1142–1147. https://doi.org/10.1161/STROKEAHA.107.496513
Nahab F, Cotsonis G, Lynn M, Feldmann E, Chaturvedi S, Hemphill JC, Zweifler R, Johnston K, Bonovich D, Kasner S, Chimowitz M (2008) Prevalence and prognosis of coexistent asymptomatic intracranial stenosis. Stroke 39(3):1039–1041. https://doi.org/10.1161/STROKEAHA.107.499475
Wu F, Ma Q, Song H, Guo X, Diniz MA, Song SS, Gonzalez NR, Bi X, Ji X, Li D, Yang Q, Fan Z (2018) Differential features of culprit intracranial atherosclerotic lesions: a whole-brain vessel wall imaging study in patients with acute ischemic. Stroke J Am Heart Assoc 7(15):e009705. https://doi.org/10.1161/JAHA.118.009705
Hurford R, Wolters FJ, Li L, Lau KK, Küker W, Rothwell PM (2020) Prevalence, predictors, and prognosis of symptomatic intracranial stenosis in patients with transient ischaemic attack or minor stroke: a population-based cohort study. Lancet Neurol 19(5):413–421. https://doi.org/10.1016/S1474-4422(20)30079-X
Hurford R, Wolters FJ, Li L, Lau KK, Küker W, Rothwell PM (2020) Prognosis of asymptomatic intracranial stenosis in patients with transient ischemic attack and minor stroke. JAMA Neurol 77(8):947–954. https://doi.org/10.1001/jamaneurol.2020.1326
Tao L, Li XQ, Hou XW, Yang BQ, Xia C, Ntaios G, Chen HS (2021) Intracranial atherosclerotic plaque as a potential cause of embolic stroke of undetermined source. J Am Coll Cardiol 77(6):680–691. https://doi.org/10.1016/j.jacc.2020.12.015
Turan TN, Rumboldt Z, Granholm AC, Columbo L, Welsh CT, Lopes-Virella MF, Spampinato MV, Brown TR (2014) Intracranial atherosclerosis: correlation between in-vivo 3T high resolution MRI and pathology. Atherosclerosis 237(2):460–463. https://doi.org/10.1016/j.atherosclerosis.2014.10.007
Jiang Y, Zhu C, Peng W, Degnan AJ, Chen L, Wang X, Liu Q, Wang Y, Xiang Z, Teng Z, Saloner D, Lu J (2016) Ex-vivo imaging and plaque type classification of intracranial atherosclerotic plaque using high resolution MRI. Atherosclerosis 249:10–16. https://doi.org/10.1016/j.atherosclerosis.2016.03.033
Song JW, Pavlou A, Xiao J, Kasner SE, Fan Z, Messé SR (2021) Vessel wall magnetic resonance imaging biomarkers of symptomatic intracranial atherosclerosis: a meta-analysis. Stroke 52(1):193–202. https://doi.org/10.1161/STROKEAHA.120.031480
Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762. https://doi.org/10.1038/nrclinonc.2017.141
Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, Cook G (2020) Introduction to radiomics. J Nucl Med 61(4):488–495. https://doi.org/10.2967/jnumed.118.222893
van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts HJWL (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339
Lekadir K, Galimzianova A, Betriu A, Del Mar VM, Igual L, Rubin DL, Fernandez E, Radeva P, Napel S (2017) A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound. IEEE J Biomed Health Inform 21(1):48–55. https://doi.org/10.1109/JBHI.2016.2631401
Kolossváry M, Karády J, Kikuchi Y, Ivanov A, Schlett CL, Lu MT, Foldyna B, Merkely B, Aerts HJ, Hoffmann U, Maurovich-Horvat P (2019) Radiomics versus visual and histogram-based assessment to identify atheromatous lesions at coronary CT angiography: an ex vivo study. Radiology 293(1):89–96. https://doi.org/10.1148/radiol.2019190407
Shi Z, Zhu C, Degnan AJ, Tian X, Li J, Chen L, Zhang X, Peng W, Chen C, Lu J, Jiang T, Saloner D, Liu Q (2018) Identification of high-risk plaque features in intracranial atherosclerosis: initial experience using a radiomic approach. Eur Radiol 28(9):3912–3921. https://doi.org/10.1007/s00330-018-5395-1
Shi Z, Li J, Zhao M, Peng W, Meddings Z, Jiang T, Liu Q, Teng Z, Lu J (2020) Quantitative histogram analysis on intracranial atherosclerotic plaques: a high-resolution magnetic resonance imaging study. Stroke 51(7):2161–2169. https://doi.org/10.1161/STROKEAHA.120.029062
Qiao Y, Steinman DA, Qin Q, Etesami M, Schär M, Astor BC, Wasserman BA (2011) Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging 34(1):22–30. https://doi.org/10.1002/jmri.22592
Wang M, Wu F, Yang Y, Miao H, Fan Z, Ji X, Li D, Guo X, Yang Q (2018) Quantitative assessment of symptomatic intracranial atherosclerosis and lenticulostriate arteries in recent stroke patients using whole-brain high-resolution cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson 20(1):35. https://doi.org/10.1186/s12968-018-0465-8
Swartz RH, Bhuta SS, Farb RI, Agid R, Willinsky RA, Terbrugge KG, Butany J, Wasserman BA, Johnstone DM, Silver FL, Mikulis DJ (2009) Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI. Neurology 72(7):627–634. https://doi.org/10.1212/01.wnl.0000342470.69739.b3
Chimowitz MI, Kokkinos J, Strong J, Brown MB, Levine SR, Silliman S, Pessin MS, Weichel E, Sila CA, Furlan AJ (1995) The warfarin-aspirin symptomatic intracranial disease study. Neurology 45(8):1488–1493. https://doi.org/10.1212/wnl.45.8.1488
Qiao Y, Anwar Z, Intrapiromkul J, Liu L, Zeiler SR, Leigh R, Zhang Y, Guallar E, Wasserman BA (2016) Patterns and implications of intracranial arterial remodeling in stroke patients. Stroke 47(2):434–440. https://doi.org/10.1161/STROKEAHA.115.009955
Vakil P, Vranic J, Hurley MC, Bernstein RA, Korutz AW, Habib A, Shaibani A, Dehkordi FH, Carroll TJ, Ansari SA (2013) T1 gadolinium enhancement of intracranial atherosclerotic plaques associated with symptomatic ischemic presentations. AJNR Am J Neuroradiol 34(12):2252–2258. https://doi.org/10.3174/ajnr.A3606
Qiao Y, Zeiler SR, Mirbagheri S, Leigh R, Urrutia V, Wityk R, Wasserman BA (2014) Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images. Radiology 271(2):534–542. https://doi.org/10.1148/radiol.13122812
Yu JH, Kwak HS, Chung GH, Hwang SB, Park MS, Park SH (2015) Association of intraplaque hemorrhage and acute infarction in patients with basilar artery plaque. Stroke 46(10):2768–2772. https://doi.org/10.1161/STROKEAHA.115.009412
Chung GH, Kwak HS, Hwang SB, Jin GY (2012) High-resolution MR imaging in patients with symptomatic middle cerebral artery stenosis. Eur J Radiol 81(12):4069–4074. https://doi.org/10.1016/j.ejrad.2012.07.001
Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128. https://doi.org/10.1016/j.neuroimage.2006.01.015
Leng X, Wong KS, Liebeskind DS (2014) Evaluating intracranial atherosclerosis rather than intracranial stenosis. Stroke 45(2):645–651. https://doi.org/10.1161/STROKEAHA.113.002491
Wang Y, Liu X, Wu X, Degnan AJ, Malhotra A, Zhu C (2019) Culprit intracranial plaque without substantial stenosis in acute ischemic stroke on vessel wall MRI: a systematic review. Atherosclerosis 287:112–121. https://doi.org/10.1016/j.atherosclerosis.2019.06.907
Lu SS, Ge S, Su CQ, Xie J, Mao J, Shi HB, Hong XN (2018) MRI of plaque characteristics and relationship with downstream perfusion and cerebral infarction in patients with symptomatic middle cerebral artery stenosis. J Magn Reson Imaging 48:66–73. https://doi.org/10.1002/jmri.25879
Lin GH, Song JX, Fu NX, Huang X, Lu HX (2021) Quantitative and qualitative analysis of atherosclerotic stenosis in the middle cerebral artery using high-resolution magnetic resonance imaging. Can Assoc Radiol J 72(4):783–788. https://doi.org/10.1177/0846537120961312
Yu YN, Li ML, Xu YY, Meng Y, Trieu H, Villablanca JP, Gao S, Feng F, Liebeskind DS, Xu WH (2018) Middle cerebral artery geometric features are associated with plaque distribution and stroke. Neurology 91(19):e1760–e1769. https://doi.org/10.1212/WNL.0000000000006468
Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, Bogowicz M, Boldrini L, Buvat I, Cook GJR, Davatzikos C, Depeursinge A, Desseroit MC, Dinapoli N, Dinh CV, Echegaray S, El Naqa I, Fedorov AY, Gatta R, Gillies RJ, Goh V, Götz M, Guckenberger M, Ha SM, Hatt M, Isensee F, Lambin P, Leger S, Leijenaar RTH, Lenkowicz J, Lippert F, Losnegård A, Maier-Hein KH, Morin O, Müller H, Napel S, Nioche C, Orlhac F, Pati S, Pfaehler EAG, Rahmim A, Rao AUK, Scherer J, Siddique MM, Sijtsema NM, Socarras Fernandez J, Spezi E, Steenbakkers RJHM, Tanadini-Lang S, Thorwarth D, Troost EGC, Upadhaya T, Valentini V, van Dijk LV, van Griethuysen J, van Velden FHP, Whybra P, Richter C, Löck S (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2):328–338. https://doi.org/10.1148/radiol.2020191145
Baeßler B, Weiss K, Pinto Dos Santos D (2019) Robustness and reproducibility of radiomics in magnetic resonance imaging: a phantom study. Invest Radiol 54(4):221–228. https://doi.org/10.1097/RLI.0000000000000530
Mayerhoefer ME, Szomolanyi P, Jirak D, Berg A, Materka A, Dirisamer A, Trattnig S (2019) Effects of magnetic resonance image interpolation on the results of texture-based pattern classification: a phantom study. Invest Radiol 44(7):405–411. https://doi.org/10.1097/RLI.0b013e3181a50a66
Le EPV, Rundo L, Tarkin JM, Evans NR, Chowdhury MM, Coughlin PA, Pavey H, Wall C, Zaccagna F, Gallagher FA, Huang Y, Sriranjan R, Le A, Weir-McCall JR, Roberts M, Gilbert FJ, Warburton EA, Schönlieb CB, Sala E, Rudd JHF (2021) Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events. Sci Rep 11(1):3499. https://doi.org/10.1038/s41598-021-82760-w
Kolossváry M, Park J, Bang JI, Zhang J, Lee JM, Paeng JC, Merkely B, Narula J, Kubo T, Akasaka T, Koo BK, Maurovich-Horvat P (2019) Identification of invasive and radionuclide imaging markers of coronary plaque vulnerability using radiomic analysis of coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging 20(11):1250–1258. https://doi.org/10.1093/ehjci/jez033
Zhang R, Zhang Q, Ji A, Lv P, Zhang J, Fu C, Lin J (2021) Identification of high-risk carotid plaque with MRI-based radiomics and machine learning. Eur Radiol 31(5):3116–3126. https://doi.org/10.1007/s00330-020-07361-z
Funding
This research was funded by the National Key R&D Program of China (Grant Nos 2020AAA0109505).
Author information
Authors and Affiliations
Contributions
Guarantors of integrity of entire study: HL, JL, GL, XC; study concepts/study design or data acquisition or data analysis/interpretation: HL, JL, GL, XC, ZD, XC, CZ, YL, CH, QL, XS; manuscript drafting or manuscript revision for important intellectual content: HL, JL, ZD, XC, CZ, YL, CH, QL, XS, GL, XC; approval of final version of submitted manuscript: HL, JL, GL, XC, ZD, XC, CZ, YL, CH, QL, XS.
Corresponding authors
Ethics declarations
Conflicts of interest
The authors declare that they have no conflicts of interest.
Ethical approval
All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.
Informed consent
Owing to the retrospective nature of the study, patients’ written informed consent was not required for this study.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, H., Liu, J., Dong, Z. et al. Identification of high-risk intracranial plaques with 3D high-resolution magnetic resonance imaging-based radiomics and machine learning. J Neurol 269, 6494–6503 (2022). https://doi.org/10.1007/s00415-022-11315-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00415-022-11315-4
Keywords
- Intracranial atherosclerotic disease
- High-resolution magnetic resonance imaging
- Stroke
- Radiomics
- Machine learning