Skip to main content

The efficacy of a directed rhythmic-melodic voice training in the treatment of chronic non-fluent aphasia—Behavioral and imaging results

Abstract

The main objective of this study was to investigate the efficacy of a directed rhythmic-melodic voice training (SIPARI) compared to language therapy with the focus on improvement in expressive linguistic performance. 20 patients suffering from chronic non-fluent aphasia, allocated by coin tossing to either of the groups, participated in 32 single therapy sessions over a period of 4 months. Before and after therapy, independent testers performed a standardized language test (Aachener Aphasie Test). Behavioral assessments revealed that improvements of patients of the experimental group were clinically significant compared to those of the control group. These improvements concerned the description level articulation and prosody for spontaneous speech and the subtests repetition, naming, and comprehension. Based on these improvements, a significant increase in profile level (effect size (ES) = 2.028, p < 0.001) was assessed, an overall and clinically relevant measure of the severity of aphasia. Additional fMRI examinations yielded activation in the left superior frontal gyrus for the post-minus pre- therapy assessments only for participants of the experimental group. Since this brain region is reported to be particularly involved in executive processing, we assume that the directed procedure of the SIPARI treatment with regard to musical, linguistic, and cognitive function potentially holds the key for successful language rehabilitation. While our imaging results hint at a possible explanation for its efficacy, our behavioral results corroborate the efficacy of this therapy in the treatment of chronic non-fluent aphasia patients. DRKS00026730, 19.10.21, retrospectively registered https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00026730

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Availability of data and material

The conditions of our ethics approval do not permit public archiving of anonymized study data. Readers seeking access to the data should contact the lead author M. Jungblut or the local ethics committee of the medical faculty at the RWTH Aachen, Germany. Access will be granted to named individuals in accordance with ethical procedures governing the reuse of sensitive data, including completion of a formal data sharing agreement and approval of the local ethics committee. Digital materials (experimental stimuli, presentation code etc.) have been archived in a publicly accessible repository: https://osf.io/x3haf/

Notes

  1. According to the GBD (Global Burden of Diseases) 2013 study, two thirds of all strokes occur among persons < 70 years of age [43]. Latest data indicate that between 1990–2019 there has been a significant increase in stroke prevalence and incidence rates in people younger than 70 years with even faster increases from 2010 to 2019 [44].

Abbreviations

fMRI:

Functional magnetic resonance imaging

SIPARI:

Singing, Intonation, Prosody, breathing (German Atmung), Rhythm and Improvisation

References

  1. Feigin VL, Forouzanfar MH, Krishnamurti R, Mensah GA, Connor M, Bennett DA et al (2014) Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study, 2010. Lancet 383:245–254

    PubMed  PubMed Central  Article  Google Scholar 

  2. Meinzer M, Darkow R, Lindenberg R, Flöel A (2016) Electrical stimulation of the motor cortex enhances treatment outcome in post-stroke aphasia. Brain 139:1152–1163

    PubMed  Article  Google Scholar 

  3. El Hachioui H, Lingsma HF, van der Sandt-Koenderman ME, Dippel DWJ, Koudstaal PJ, Visch-Brink EG (2013) Recovery of aphasia after stroke: a 1-year follow-up study. J Neurol 260:166–171. https://doi.org/10.1007/s00415-012-6607-2

    Article  PubMed  Google Scholar 

  4. Poeck K, Huber W, Willmes K (1989) Outcome of intensive language treatment in aphasia. Journal of Speech & Hearing Disorders 54:471–479

    CAS  Article  Google Scholar 

  5. Meinzer M, Breitenstein C (2008) Functional imaging studies of treatment-induced recovery in chronic aphasia. Aphasiology 22(12):1251–1268

    Article  Google Scholar 

  6. Brady MC, Kelly H, Goldwin J, Enderby P, Campbell P (2016) Speech and language therapy for aphasia following stroke. Cochrane Systematic Review. https://doi.org/10.1002/14651858.CD000425.pub4

    Article  Google Scholar 

  7. Holland, A., Fromm, D., Forbes, M. & MacWhinney, B. (2017). Long-term recovery in stroke accompanied by aphasia: a reconsideration. Aphasiology, 31 (2), 152–165. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509222/

  8. Johnson L, Basilakos A, Yourganov G, Cai B, Bonilha L, Rorden C, Fridriksson J (2019) Progression of aphasia severity in the chronic stages of stroke. Am J Speech Lang Pathol 28:639–649. https://doi.org/10.1044/2018_AJSLP-18-0123

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jungblut, M. (2005). Music therapy for people with chronic aphasia: a controlled study. in: D. Aldridge, Ed.: Music therapy and neurological rehabilitation. Performing health (pp 189–211). London and Philadelphia: Jessica Kingsley Publishers.

  10. Jungblut M, Aldridge D (2004) The music therapy intervention SIPARI with chronic aphasics: research findings. Neurologie und Rehabilitation 10(2):69–78 ((German))

    Google Scholar 

  11. Jungblut M (2009) SIPARI: a music therapy intervention for patients suffering with chronic non-fluent aphasia. Music and Medicine 1(2):102–105

    Article  Google Scholar 

  12. Albert ML, Sparks RW, Helm NA (1973) Melodic intonation therapy for aphasia. Arch Neurol 29:130–131

    CAS  PubMed  Article  Google Scholar 

  13. Belin P, Van Eeckhout P, Zilbovicius M, Remy P, Francois C, Guillaume S, Chain F, Rancurel G, Samson Y (1996) Recovery from nonfluent aphasia after melodic intonation therapy. A PET- study Neurology 47:1504–1511

    CAS  PubMed  Google Scholar 

  14. Keith RL, Aronson AE (1975) Singing as therapy for apraxia of speech and aphasia: report of a case. Brain Lang 2:483–488

    CAS  PubMed  Article  Google Scholar 

  15. Leo, V., Sihvonen, A.J., Linnavalli, T., Tervaniemi, M., Laine, M., Soinila, S. & Särkämö (2018). Sung melody enhances verbal learning and recall after stroke. Annals of the New York Academy of Sciences. https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/nyas.13624

  16. Racette A, Bard C, Peretz I (2006) Making non-fluent aphasics speak: sing along! Brain 129:2571–2584

    PubMed  Article  Google Scholar 

  17. Schlaug G, Marchina S, Norton A (2008) From singing to speaking: why singing may lead to recovery of expressive language function in patients with Broca’s aphasia. Music Percept 25:315–323

    PubMed  PubMed Central  Article  Google Scholar 

  18. Schlaug G, Norton A, Marchina S, Zipse L, Wan CY (2010) From singing to speaking: facilitating recovery from nonfluent aphasia. Future Neurol 5:657–665

    PubMed  PubMed Central  Article  Google Scholar 

  19. Sparks R, Helm N, Albert M (1974) Aphasia rehabilitation resulting from melodic intonation therapy. Cortex 10:303–316

    CAS  PubMed  Article  Google Scholar 

  20. Zumbansen, A., Peretz, I., Anglade, C.; Bilodeau, J., Généreux, S., Hubert, M. & Hébert, S (2016). Effect of choir activity in the rehabilitation of aphasia: a blind, randomized, controlled pilot study. Aphasiology. https://www.tandfonline.com/doi/abs/10.1080/02687038.2016.1227424?journalCode=paph20

  21. van der Meulen, I., van der Sandt-Koenderman, W.M., Heijenbrok-Kal, M.H., Visch-Brink, E.G. & Ribbers, G.M. (2014). The efficacy and timing of melodic intonation therapy in subacute aphasia. Neurorehabilitation and Neural Repair, 28, 536–544. http://nnr.sagepub.com/content/early/2014/01/17/15459683135117753

  22. an der Meulen, I., van der Sandt-Koenderman, W.M., Heijenbrok, M.H., Visch-Brink, E.G. & Ribbers, G.M. (2016). Melodic intonation therapy in chronic aphasia: evidence from a pilot randomized controlled trial. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2016.00533/full

  23. Naeser MA, Helm Estabrooks N (1985) CT scan lesion localization and response to Melodic Intonation Therapy with nonfluent aphasia cases. Cortex 21:203–223

    CAS  PubMed  Article  Google Scholar 

  24. Jungblut M, Suchanek M, Gerhard H (2009) Long-term recovery from chronic global aphasia: a case report. Music and Medicine 1:61–69

    Article  Google Scholar 

  25. Jungblut, M., Mais, C., Huber, W. & Schnitker, R. (2014). Paving the way for speech: voice-training induced plasticity in chronic aphasia and apraxia of speech – three single cases. Neural Plasticity. https://www.hindawi.com/journals/np/2014/841982/

  26. Jungblut M, Mais C, Huber W, Binkofski FC, Schüppen A (2020) 5-year course of therapy-induced recovery in chronic non-fluent aphasia – Three single cases. Cortex 132:147–165. https://doi.org/10.1016/j.cortex.2020.08.009

    Article  PubMed  Google Scholar 

  27. Basilakos, A. (2018). Contemporary approaches to the management of post-stroke apraxia of speech. Seminars in Speech and Language, 39 (1), 25–36. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5834303/

  28. Baum SR, Boyczuk JP (1999) Speech timing subsequent to brain damage: effects of utterance length and complexity. Brain Lang 67:30–45

    CAS  PubMed  Article  Google Scholar 

  29. Danly M, Shapiro B (1982) Speech prosody in Broca’s aphasia. Brain Lang 16:171–190

    CAS  PubMed  Article  Google Scholar 

  30. Maas E, Robin DA, Wright DL, Ballard KJ (2008) Motor programming in apraxia of speech. Brain Lang 106:107–118

    PubMed  Article  Google Scholar 

  31. McNeil MR (2011) Clinical management of sensorimotor speech disorders. Thieme, New York

    Google Scholar 

  32. Schirmer A (2004) Timing speech: a review of lesion and neuroimaging findings. Cogn Brain Res 21:269–287

    Article  Google Scholar 

  33. Wambaugh JL, Martinez AL (2000) Effects of rate and rhythm control treatment on consonant production accuracy in apraxia of speech. Aphasiology 14(8):851–871

    Article  Google Scholar 

  34. Bradt J, Magee WL, Dileo C, Wheeler BL, Gilloway E (2010) Music therapy for acquired brain injury. Cochrane Database of Systematic Reviews, Issue 7:1–42

    Google Scholar 

  35. Magee, W.L., Clark, I., Tamplin, J. & Bradt, J. (2017). Music interventions for acquired brain injury. Cochrane Database of Systematic Reviews, Jan: 2017 (1): CD006787. Doi: https://doi.org/10.1002/14651858.CD006787.pub3

  36. Jungblut M, Huber W, Pustelniak M, Schnitker R (2012) The impact of rhythm complexity on brain activation during simple singing: an event-related fMRI study. Restor Neurol Neurosci 30(1):39–53

    PubMed  Google Scholar 

  37. Bamiou DE, Musiek FE, Luxon LM (2003) The insula (Island of Reil) and its role in auditory processing. Literature review Brain Research Reviews 42:143–154

    PubMed  Article  Google Scholar 

  38. Bamiou DE, Musiek FE, Stow I, Stevens J, Cipolotti I, Brown MD, Luxon LM (2006) Auditory temporal processing deficits in patients with insular stroke. Neurology 67:614–619

    PubMed  Article  Google Scholar 

  39. Levitin DJ (2009) The neural correlates of temporal structure in music. Music and Medicine 1:9–13

    Article  Google Scholar 

  40. Huber, W., Poeck, K., Weniger, D. & Willmes, K. (1983). Aachener Aphasie Test (AAT), Protokollheft und Handanweisung. Göttingen, Germany, Hogrefe. http://www.phoenixtechnologie.de/produkte-3/aatp/aat/

  41. Habbema, J.D.F., Hermans, J. & van den Broek, K. (1974). A stepwise discriminant analysis program using density estimation. In: G. Bruckmann (Ed.), COMPSTAT 1974, proceedings in computational statistics, Wien: Physica. http://www.phoenixtechnologie.de/produkte-3/aatp/

  42. Oldfield RC (1971) The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia 9(1):97–113

    CAS  PubMed  Article  Google Scholar 

  43. Feigin VL, Norrving GA (2017) Global Burden of Stroke. Circul Res 120:439–448. https://doi.org/10.1161/CIRCRESAHA.116.308413

    CAS  Article  Google Scholar 

  44. Feigin VL, Stark BA, Johnson CO et al (2021) (GBD 2019 Stroke Collaborators) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20(10):795–820. https://doi.org/10.1016/S1474-4422(21)00252-0

    CAS  Article  Google Scholar 

  45. Levelt WJM, Roelofs A, Meyer AS (1999) A theory of lexical access in speech production. Behavioral and Brain Sciences 22(1):1–75

    CAS  PubMed  Google Scholar 

  46. Guenther FH, Gosh SS, Tourville JA (2006) Neural modeling and imaging of the cortical interactions underlying syllable production. Brain Lang 96:280–301

    PubMed  Article  Google Scholar 

  47. Ziegler W (2002) Psycholinguistic and motor theories of apraxia of speech. Semin Speech Lang 23(4):231–243

    PubMed  Article  Google Scholar 

  48. McAngus Todd NP (1994) The auditory “primal sketch”: a multiscale model of rhythmic grouping. Journal of New Music Research 23:25–70

    Article  Google Scholar 

  49. Marin, O.S.M. & Perry, D.W. (1999). Neurological aspects of musical perception and performance. In: D. Deutsch (Ed.): The Psychology of Music (pp. 653–712). San Diego: Academic Press, 2nd ed.

  50. Baddeley A (1992) Working memory. Science. https://doi.org/10.1126/science.1736359

    Article  PubMed  Google Scholar 

  51. Perry, D.W. (1994, July). The role of imagined singing in auditory-tonal working memory. Paper presented at Mapping cognition in time and space: Combining functional imaging with MEG and EEG, Magdeburg, Germany.

  52. Perry, D.W., Zatorre, R.J., Petrides, M. & Evans, A.C. (1995). Cortical activation during tonal working memory tasks in musicians and nonmusicians. [First International Conference on Functional Mapping of the Human Brain, Paris.] Human Brain Mapping, S1, 247.

  53. Miller N, De Bleser R, Willmes K (2000) The English Version of the Aachener Aphasie Test (EAAT). Hogrefe, Göttingen, Germany

    Google Scholar 

  54. Willmes K (1985) An approach to analyzing a single subject’s scores obtained in a standardized test with application to the Aachen aphasia test (AAT). J Clin Exp Neuropsychol 7(4):331–352. https://doi.org/10.1080/01688638508401268

    CAS  Article  PubMed  Google Scholar 

  55. Friston KJ, Frith CD, Turner R, Frackowiak RS (1995) Characterizing evoked hemodynamics with fMRI. Neuroimage 2(2):157–165

    CAS  PubMed  Article  Google Scholar 

  56. Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E. & Penny, W.E. (Eds.) (2007). Statistical Parametric Mapping: the analysis of functional brain images. San Diego, CA, USA: Academic Press, 1st edition.

  57. Besson M, Friederici AD (1998) Language and Music: A comparative view. Music Percept 16(1):1–9

    Article  Google Scholar 

  58. Cutler A, Dahan D, van Donselaar W (1997) Prosody in the comprehension of spoken language: a literature review. Lang Speech 40(2):141–201

    PubMed  Article  Google Scholar 

  59. Pell M, Baum S (1997) Unilateral brain damage, prosodic comprehension deficits, and the acoustic cues to prosody. Brain Lang 57:195–214

    CAS  PubMed  Article  Google Scholar 

  60. Speer SR, Kjelgaard MM, Dobroth KM (1996) The influence of prosodic structure on the resolution of temporary syntactic closure ambiguities. J Psycholinguist Res 25(2):249–271

    CAS  PubMed  Article  Google Scholar 

  61. Cutler A (1994) The perception of rhythm in language. Cognition 50:79–81

    CAS  PubMed  Article  Google Scholar 

  62. Echols C, Crowhurst MJ, Childers JB (1997) The perception of rhythmic units in speech by infants and adults. J Mem Lang 36:202–226

    Article  Google Scholar 

  63. Payne, M.C. & Holzman, T.G. (1986). Rhythm as a factor in memory. In: J.R. Evans & M. Clynes (Eds.): Rhythm in psychological, linguistic and musical processes (pp 41–54). Springfield, IL, USA: Charles C Thomas Publisher.

  64. Glenberg AM, Jona M (1991) Temporal coding in rhythm tasks revealed by modality effects. Mem Cognit 19(5):514–522

    CAS  PubMed  Article  Google Scholar 

  65. Helm-Estabrooks N, Tabor Connor L, Albert ML (2000) Treating attention to improve auditory comprehension in aphasia. Brain Lang 74(3):469–472

    Google Scholar 

  66. Ballard KJ, Granier JP, Robin DA (2000) Understanding the nature of apraxia of speech: theory, analysis, and treatment. Aphasiology 14(10):969–995

    Article  Google Scholar 

  67. Kirshner, H.S. (1995). Apraxia of speech. In: H.S. Kirshner, Ed.: “Handbook of neurological speech and language disorders (pp. 41–57). New York, NY, USA: Marcel Dekker.

  68. Brownsett SLE, Warren JE, Geranmayeh F, Woodhead Z, Leech R, Wise RJS (2014) Cognitive control and its impact on recovery from aphasic stroke. Brain 137:242–254

    PubMed  Article  Google Scholar 

  69. Efron R (1963) Temporal perception, aphasia and déjà vu. Brain 86:403–424

    CAS  PubMed  Article  Google Scholar 

  70. Hula WD, McNeil MR (2008) Models of attention and dual-task performance as explanatory constructs in aphasia. Semin Speech Lang 29:169–187

    PubMed  Article  Google Scholar 

  71. Liégois-Chauvel C, de Graaf JB, Laguitton V, Chauvel P (1999) Specialization of left auditory cortex for speech perception in man depends on temporal coding. Cereb Cortex 9:484–496

    Article  Google Scholar 

  72. Robin DA, Tranel D, Damasio H (1990) Auditory perception of temporal and spectral events in patients with focal left and right cerebral lesions. Brain Lang 39:539–555

    CAS  PubMed  Article  Google Scholar 

  73. Tallal P, Miller S, Fitch RH (1995) Neurobiological basis of speech: a case of preeminence of temporal processing. Irish Journal of Psychology 16(3):195–219

    Article  Google Scholar 

  74. Geranmayeh F, Chau TW, Wise RJS, Leech R, Hampshire A (2017) Domain-general subregions of the medial prefrontal cortex contribute to recovery of language after stroke. Brain 140(7):1947–1958

    PubMed  PubMed Central  Article  Google Scholar 

  75. Schumacher R, Halai AD, Lambon Ralph MA (2019) Assessing and mapping language, attention and executive multidimensional deficits in stroke aphasia. Brain 142:3202–3216

    PubMed  PubMed Central  Article  Google Scholar 

  76. Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283:16571661

    Google Scholar 

  77. Wager TD, Smith EE (2003) Neuroimaging studies of working memory: a meta-analysis. Cognitive, Affective and Behavioural Neuroscience 3(4):255–274

    Article  Google Scholar 

  78. Rypma B, Berger JS, D’Esposito M (2002) The influence of working-memory demand and subject performance on prefrontal cortex activity. J Cogn Neurosci 14(5):721–731

    PubMed  Article  Google Scholar 

  79. du Boisgueheneuc F, Levy R, Volle E, Seassau M, Duffau H, Kinkingnehun S, Samson Y, Zhang S, Dubois B (2006) Functions of the left superior frontal gyrus in humans: a lesion study. Brain 129:3315–3328

    PubMed  Article  Google Scholar 

  80. Breitenstein C, Grewe T, Flöel A, Ziegler W, Springer L, Martus P, Huber W et al (2017) Intensive speech and language therapy in patients with chronic aphasia after stroke: a randomised, open-label, blinded-endpoint, controlled trial in a health-care setting. Lancet 389:1528–1538

    PubMed  Article  Google Scholar 

  81. Meinzer M, Harnish S, Conway T, Crosson B (2011) Recent developments in functional and structural imaging of aphasia recovery after stroke. Aphasiology 25(3):271–290

    PubMed  PubMed Central  Article  Google Scholar 

  82. Simic T, Rochon E, Greco E, Martino R (2017) Baseline executive control ability and its relationship to language therapy improvements in post-stroke aphasia: a systematic review. Neuropsychol Rehabil 29(3):395–439. https://doi.org/10.1080/09602011.2017.1307768

    Article  PubMed  Google Scholar 

  83. Simic T, Bitan T, Turner G, Chambers C, Goldberg D, Leonhard C, Rochon E (2019) The role of executive control in post-stroke aphasia treatment. Neuropsychol Rehabil 30(10):1853–1892. https://doi.org/10.1080/09602011.2019.1611607

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The Brain Imaging Facility, a facility of the Interdisciplinary Center for Clinical Research (IZKF) Aachen within the Faculty of Medicine at RWTH Aachen University, supported this research.

Funding

This work was funded in part by the Gebrüder Werner Stiftung.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: JS. Acquisition of data: JMS. Analysis and interpretation of data: JMS. Drafting the article: JS. Critically revising the article: JB. Reviewed final version of manuscript and approved it for submission: All authors. Funding acquisition: Mais. Study supervision: JB.

Corresponding author

Correspondence to Monika Jungblut.

Ethics declarations

Conflicts of interest

The authors have declared that there are no conflicts of interests in the authorship and publication of this contribution.

Ethics approval

The study was approved by the Ethics Committee at the Medical Faculty of the RWTH Aachen (EK 013/10).

Consent to participate

Written informed consent was obtained from all individual participants in the study.

Consent for publication

All patients gave written informed consent for publication on condition that there is no reference to them personally in any publication.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jungblut, M., Mais, C., Binkofski, F.C. et al. The efficacy of a directed rhythmic-melodic voice training in the treatment of chronic non-fluent aphasia—Behavioral and imaging results. J Neurol (2022). https://doi.org/10.1007/s00415-022-11163-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00415-022-11163-2

Keywords

  • Chronic non-fluent aphasia
  • fMRI
  • Language therapy
  • SIPARI
  • Executive functions
  • Left superior frontal gyrus