Skip to main content

Advertisement

Log in

Neuron Specific Enolase, S100-beta protein and progranulin as diagnostic biomarkers of status epilepticus

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Status epilepticus (SE) is a life-threatening prolonged epileptic seizure. A rapid diagnosis is fundamental to initiate antiepileptic treatment and to prevent the development of neurological sequels. Several serum and cerebrospinal fluid biomarkers have been proposed to help in the diagnosis of SE. Nevertheless, previous studies were conducted on too small patient cohorts, precluding the utilization of interesting biomarkers for the SE diagnosis. Here, we aimed to assess the ability of Neuron Specific Enolase (NSE), S100-beta protein (S100B) and progranulin to help in the diagnosis of SE in a large cohort of patients (36 control patients, 56 patients with pharmacoresistant epilepsy and 82 SE patients). Blood NSE, S100B and progranulin levels were higher in SE patients when compared with control patients or patients with pharmacoresistant epilepsy. Both NSE and progranulin levels were higher in cerebrospinal fluid from SE patients when compared with control patients. The receiver-operating characteristics curves revealed good accuracy at detecting SE for serum S100B (AUC 0.748) and plasma progranulin (AUC 0.756). The performances were lower for serum NSE (AUC 0.624). Eighty-four percent of patients with serum S100B levels above 0.09 ng/mL presented with a SE, whereas 90% of patients without SE had serum S100B levels lower than 0.09 ng/mL. Serum S100B levels were not significantly different according to SE etiology, SE semiology or SE refractoriness. Our results confirm that NSE, S100B and progranulin levels are increased after SE. We suggest that serum S100B levels might be added to clinical evaluation and electroencephalogram to identify difficult-to-diagnose form of SE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

All data are available on request upon the corresponding author.

Code availability

Not applicable.

Abbreviations

CONT:

Control patients

CSF:

Cerebrospinal fluid

EEG:

Electroencephalogram

EPI:

Pharmacoresistant epileptic patients

ICU:

Intensive Care Unit

NPV:

Negative predictive value

NSE:

Neuron Specific Enolase

NRSE:

Non-refractory status epilepticus

PPV:

Positive predictive value

PSRSE:

Prolonged super-refractory status epilepticus

ROC:

Receiver-operating characteristics

RSE:

Refractory status epilepticus

S100B:

S100-beta protein

SE:

Status epilepticus

References

  1. Trinka E, Kälviäinen R (2017) 25 years of advances in the definition, classification and treatment of status epilepticus. Seizure 44:65–73. https://doi.org/10.1016/j.seizure.2016.11.001

    Article  PubMed  Google Scholar 

  2. Alkhachroum A, Der-Nigoghossian CA, Rubinos C, Claassen J (2020) Markers in status epilepticus prognosis. J Clin Neurophysiol 37:422–428. https://doi.org/10.1097/WNP.0000000000000761

    Article  PubMed  PubMed Central  Google Scholar 

  3. Claassen J, Goldstein JN (2017) Emergency neurological life support: status epilepticus. Neurocrit Care 27:152–158. https://doi.org/10.1007/s12028-017-0460-1

    Article  PubMed  Google Scholar 

  4. Leitinger M, Beniczky S, Rohracher A et al (2015) Salzburg consensus criteria for non-convulsive status epilepticus—approach to clinical application. Epilepsy Behav 49:158–163. https://doi.org/10.1016/j.yebeh.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  5. Hanin A, Lambrecq V, Denis JA et al (2020) Cerebrospinal fluid and blood biomarkers of status epilepticus. Epilepsia 61:6–18. https://doi.org/10.1111/epi.16405

    Article  CAS  PubMed  Google Scholar 

  6. Correale J, Rabinowicz AL, Heck CN et al (1998) Status epilepticus increases CSF levels of neuron-specific enolase and alters the blood-brain barrier. Neurology 50:1388–1391

    Article  CAS  Google Scholar 

  7. DeGiorgio CM, Correale JD, Gott PS et al (1995) Serum neuron-specific enolase in human status epilepticus. Neurology 45:1134–1137

    Article  CAS  Google Scholar 

  8. DeGiorgio CM, Heck CN, Rabinowicz AL et al (1999) Serum neuron-specific enolase in the major subtypes of status epilepticus. Neurology 52:746–749

    Article  CAS  Google Scholar 

  9. Gnanapavan S, Hegen H, Khalil M et al (2014) Guidelines for uniform reporting of body fluid biomarker studies in neurologic disorders. Neurology 83:1210–1216. https://doi.org/10.1212/WNL.0000000000000809

    Article  PubMed  Google Scholar 

  10. Vizuete AFK, Hennemann MM, Gonçalves CA, de Oliveira DL (2017) Phase-dependent astroglial alterations in li-pilocarpine-induced status epilepticus in young rats. Neurochem Res 42:2730–2742. https://doi.org/10.1007/s11064-017-2276-y

    Article  CAS  PubMed  Google Scholar 

  11. Freund Y, Bloom B, Bokobza J et al (2015) Predictive value of S100-B and copeptin for outcomes following seizure: the BISTRO International Cohort Study. PLoS ONE 10:e0122405. https://doi.org/10.1371/journal.pone.0122405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Asadollahi M, Simani L (2019) The diagnostic value of serum UCHL-1 and S100-B levels in differentiate epileptic seizures from psychogenic attacks. Brain Res 1704:11–15. https://doi.org/10.1016/j.brainres.2018.09.028

    Article  CAS  PubMed  Google Scholar 

  13. Zhu S, Tai C, Petkau TL et al (2013) Progranulin promotes activation of microglia/macrophage after pilocarpine-induced status epilepticus. Brain Res 1530:54–65. https://doi.org/10.1016/j.brainres.2013.07.023

    Article  CAS  PubMed  Google Scholar 

  14. Huchtemann T, Körtvélyessy P, Feistner H et al (2015) Progranulin levels in status epilepticus as a marker of neuronal recovery and neuroprotection. Epilepsy Behav 49:170–172. https://doi.org/10.1016/j.yebeh.2015.06.022

    Article  CAS  PubMed  Google Scholar 

  15. Cuschieri S (2019) The STROBE guidelines. Saudi J Anaesth 13:S31–S34. https://doi.org/10.4103/sja.SJA_543_18

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chou SH-Y, Macdonald RL, Keller E, Unruptured Intracranial Aneurysms, SAH CDE Project Investigators (2019) Biospecimens and molecular and cellular biomarkers in aneurysmal subarachnoid hemorrhage studies: common data elements and standard reporting recommendations. Neurocrit Care 30:46–59. https://doi.org/10.1007/s12028-019-00725-4

    Article  PubMed  PubMed Central  Google Scholar 

  17. Helbok R, Beer R (2017) Cerebrospinal fluid and brain extracellular fluid in severe brain trauma. Handb Clin Neurol 146:237–258. https://doi.org/10.1016/B978-0-12-804279-3.00014-9

    Article  PubMed  Google Scholar 

  18. Trinka E, Cock H, Hesdorffer D et al (2015) A definition and classification of status epilepticus—report of the ILAE Task Force on classification of status epilepticus. Epilepsia 56:1515–1523. https://doi.org/10.1111/epi.13121

    Article  PubMed  Google Scholar 

  19. Hirsch LJ, Gaspard N, van Baalen A et al (2018) Proposed consensus definitions for new-onset refractory status epilepticus (NORSE), febrile infection-related epilepsy syndrome (FIRES), and related conditions. Epilepsia 59:739–744. https://doi.org/10.1111/epi.14016

    Article  PubMed  Google Scholar 

  20. Fluss R, Faraggi D, Reiser B (2005) Estimation of the Youden Index and its associated cutoff point. Biom J 47:458–472. https://doi.org/10.1002/bimj.200410135

    Article  PubMed  Google Scholar 

  21. Chou SH-Y, Robertson CS, Participants in the International Multi-disciplinary Consensus Conference on the Multimodality Monitoring (2014) Monitoring biomarkers of cellular injury and death in acute brain injury. Neurocrit Care 21(Suppl 2):S187-214. https://doi.org/10.1007/s12028-014-0039-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tawk RG, Grewal SS, Heckman MG et al (2016) The relationship between serum neuron-specific enolase levels and severity of bleeding and functional outcomes in patients with nontraumatic subarachnoid hemorrhage. Neurosurgery 78:487–491. https://doi.org/10.1227/NEU.0000000000001140

    Article  PubMed  Google Scholar 

  23. Hanin A, Demeret S, Denis JA et al (2021) Serum neuron-specific enolase: a new tool for seizure risk monitoring after status epilepticus. Eur J Neurol. https://doi.org/10.1111/ene.15154

    Article  PubMed  Google Scholar 

  24. Jaitly R, Sgro JA, Towne AR et al (1997) Prognostic value of EEG monitoring after status epilepticus: a prospective adult study. J Clin Neurophysiol 14:326–334

    Article  CAS  Google Scholar 

  25. Sanchez-Peña P, Pereira A-R, Sourour N-A et al (2008) S100B as an additional prognostic marker in subarachnoid aneurysmal hemorrhage. Crit Care Med 36:2267–2273. https://doi.org/10.1097/CCM.0b013e3181809750

    Article  CAS  PubMed  Google Scholar 

  26. Tan TH-L, Perucca P, O’Brien TJ et al (2021) Inflammation, ictogenesis, and epileptogenesis: an exploration through human disease. Epilepsia 62:303–324. https://doi.org/10.1111/epi.16788

    Article  PubMed  Google Scholar 

  27. Abboud H, Probasco JC, Irani S et al (2021) Autoimmune encephalitis: proposed best practice recommendations for diagnosis and acute management. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2020-325300

    Article  PubMed  Google Scholar 

Download references

Funding

This work received support from the “Investissements d’avenir” program ANR-10-IAIHU-06, from the “Fondation pour la Recherche Médicale” (FDM20170839111) and from the Fondation Assistance Publique-Hôpitaux de Paris (EPIRES- Marie Laure PLV Merchandising).

Author information

Authors and Affiliations

Authors

Contributions

Drafting the manuscript for content: AH and VN. Major role in the acquisition of data: AH, JAD, VF, FI-B, BR, CM, and VL. Study concept and design: AH, DB-R, SD, and VN. Analysis or interpretation of data: AH, JAD, VF, SD, and VN. Statistical analysis: AH. Obtaining funding: AH and VN. Revising the manuscript for content: JAD, VF, FI-B, BR, DB-R, CM, VL, and SD.

Corresponding author

Correspondence to Vincent Navarro.

Ethics declarations

Conflicts of interest

Vincent Navarro reports personal fees from UCB Pharma, EISAI, GW Pharma and LivaNova, outside the submitted work. Sophie Demeret reports individual payment from UCB Pharma, Regeneron and ARGENX. The other authors report no disclosures.

Ethical approval

The protocol was approved by our local (2012, CPP Paris-VI) and by the INSERM ethic committees (C16-16, 20152482). The study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Consent to participate

Patients or relatives were informed and give their consent.

Consent for publication

Patients or relatives were informed and give their consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanin, A., Denis, J.A., Frazzini, V. et al. Neuron Specific Enolase, S100-beta protein and progranulin as diagnostic biomarkers of status epilepticus. J Neurol 269, 3752–3760 (2022). https://doi.org/10.1007/s00415-022-11004-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-022-11004-2

Keywords

Navigation