Skip to main content

Imaging selection for reperfusion therapy in acute ischemic stroke beyond the conventional time window

Abstract

Originally, the efficacy of acute ischemic stroke treatment with thrombolysis or thrombectomy was only proven in narrow time windows of, respectively, 4.5 and 6 h after onset. Introducing imaging-based selection beyond non-contrast enhanced computed tomography has expanded the treatment window, focusing on presumed tissue status rather than solely on time after stroke onset. Different mismatch concepts have been adopted in clinical practice to select patients in the extended and unknown time window based on findings from randomized controlled trials. Since various concepts exist that can identify patients likely to benefit from reperfusion strategies, clinicians may wonder which imaging modality may be preferred in the emergency setting. In this review, we will discuss the different mismatch concepts and their practical implementation for patient selection for thrombolysis or thrombectomy, beyond the conventional time window.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. Aguiar De Sousa D, Von Martial R, Abilleira S, Gattringer T, Kobayashi A, Gallofre M, Fazekas F, Szikora I, Feigin V, Caso V et al (2019) Access to and delivery of acute ischaemic stroke treatments: a survey of national scientific societies and stroke experts in 44 European countries. Eur Stroke J 4:13–28

    Article  PubMed  Google Scholar 

  2. Marler JR, Brott T, Broderick J, Kothari R, Odonoghue M, Barsan W, Tomsick T, Spilker J, Miller R, Sauerbeck L et al (1995) Tissue-plasminogen activator for acute ischemic stroke. New Engl J Med. 333:1581–1587

    Article  CAS  Google Scholar 

  3. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T et al (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359:1317–1329

    Article  CAS  PubMed  Google Scholar 

  4. Goyal M, Menon BK, Van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, Davalos A, Majoie CB, Van Der Lugt A, De Miquel MA et al (2016) Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387:1723–1731

    Article  PubMed  Google Scholar 

  5. Hill MD, Goyal M, Demchuk AM, Fisher M (2015) Ischemic stroke tissue-window in the new era of endovascular treatment. Stroke 46:2332–2334

    Article  PubMed  Google Scholar 

  6. Wouters A, Dupont P, Christensen S, Norrving B, Laage R, Thomalla G, Albers G, Thijs V, Lemmens R (2016) Association between time from stroke onset and fluid-attenuated inversion recovery lesion intensity is modified by status of collateral circulation. Stroke 47:1018–1022

    Article  PubMed  PubMed Central  Google Scholar 

  7. Menon BK, Smith EE, Coutts SB, Welsh DG, Faber JE, Goyal M, Hill MD, Demchuk AM, Damani Z, Cho KH et al (2013) Leptomeningeal collaterals are associated with modifiable metabolic risk factors. Ann Neurol 74:241–248

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yaghi S, Dehkharghani S, Raz E, Jayaraman M, Tanweer O, Grory BM, Henninger N, Lansberg MG, Albers GW, Havenon A (2021) The effect of hyperglycemia on infarct growth after reperfusion: an analysis of the defuse 3 trial. J Stroke Cerebrovasc Dis 30:105380

    Article  PubMed  Google Scholar 

  9. Ribo M, Molina CA, Delgado P, Rubiera M, Delgado-Mederos R, Rovira A, Munuera J, Alvarez-Sabin J (2007) Hyperglycemia during ischemia rapidly accelerates brain damage in stroke patients treated with Tpa. J Cereb Blood Flow Metab 27:1616–1622

    Article  CAS  PubMed  Google Scholar 

  10. Thomalla G, Cheng B, Ebinger M, Hao Q, Tourdias T, Wu O, Kim JS, Breuer L, Singer OC, Warach S et al (2011) Dwi-flair mismatch for the identification of patients with acute ischaemic stroke within 4.5 H of symptom onset (pre-flair): a multicentre observational study. Lancet Neurol 10:978–986

    Article  PubMed  Google Scholar 

  11. Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, Bammer R, Kakuda W, Lansberg MG, Shuaib A et al (2006) Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (defuse) study. Ann Neurol 60:508–517

    Article  PubMed  Google Scholar 

  12. Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, Cheripelli B, Cho TH, Fazekas F, Fiehler J et al (2018) Mri-guided thrombolysis for stroke with unknown time of onset. N Engl J Med 379:611–622

    Article  PubMed  Google Scholar 

  13. Lutsep HL, Albers GW, Decrespigny A, Kamat GN, Marks MP, Moseley ME (1997) Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischemic stroke. Ann Neurol 41:574–580

    Article  CAS  PubMed  Google Scholar 

  14. Horikawa Y, Naruse S, Tanaka C, Hirakawa K, Nishikawa H (1986) Proton NMR relaxation times in ischemic brain edema. Stroke 17:1149–1152

    Article  CAS  PubMed  Google Scholar 

  15. Lansberg MG, Thijs VN, O’brien MW, Ali JO, De Crespigny AJ, Tong DC, Moseley ME, Albers GW (2001) Evolution of apparent diffusion coefficient, diffusion-weighted, and t2-weighted signal intensity of acute stroke. Am J Neuroradiol 22:637–644

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Brant-Zawadzki M, Atkinson D, Detrick M, Bradley WG, Scidmore G (1996) Fluid-attenuated inversion recovery (Flair) for assessment of cerebral infarction initial clinical experience in 50 patients. Stroke 27:1187–1191

    Article  CAS  PubMed  Google Scholar 

  17. Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 12:723–725

    Article  CAS  PubMed  Google Scholar 

  18. Campbell BC, Christensen S, Levi CR, Desmond PM, Donnan GA, Davis SM, Parsons MW (2011) Cerebral blood flow is the optimal Ct perfusion parameter for assessing infarct core. Stroke 42:3435–3440

    Article  PubMed  Google Scholar 

  19. Olivot JM, Mlynash M, Thijs VN, Kemp S, Lansberg MG, Wechsler L, Bammer R, Marks MP, Albers GW (2009) Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke 40:469–475

    Article  PubMed  Google Scholar 

  20. Lin L, Bivard A, Krishnamurthy V, Levi CR, Parsons MW (2016) Whole-brain Ct perfusion to quantify acute ischemic penumbra and core. Radiology 279:876–887

    Article  PubMed  Google Scholar 

  21. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, Yavagal DR, Ribo M, Cognard C, Hanel RA et al (2018) Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 378:11–21

    Article  PubMed  Google Scholar 

  22. Lees KR, Bluhmki E, Von Kummer R, Brott TG, Toni D, Grotta JC, Albers GW, Kaste M, Marler JR, Hamilton SA et al (2010) Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of Ecass, Atlantis, Ninds and epithet trials. Lancet 375:1695–1703

    Article  CAS  PubMed  Google Scholar 

  23. Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, Brott T, Cohen G, Davis S, Donnan G et al (2014) Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 384:1929–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hacke W, Donnan G, Fieschi C, Kaste M, Von Kummer R, Broderick JP, Brott T, Frankel M, Grotta JC, Haley EC Jr et al (2004) Association of outcome with early stroke treatment: pooled analysis of Atlantis, Ecass and Ninds Rt-Pa stroke trials. Lancet 363:768–774

    Article  PubMed  Google Scholar 

  25. Rocha M, Desai SM, Jadhav AP, Jovin TG (2019) Prevalence and temporal distribution of fast and slow progressors of infarct growth in large vessel occlusion stroke. Stroke 50:2238–2240

    Article  PubMed  Google Scholar 

  26. Peter-Derex L, Derex L (2019) Wake-up stroke: from pathophysiology to management. Sleep Med Rev 48:101212

    Article  PubMed  Google Scholar 

  27. Ma H, Campbell BCV, Parsons MW, Churilov L, Levi CR, Hsu C, Kleinig TJ, Wijeratne T, Curtze S, Dewey HM et al (2019) Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med 380:1795–1803

    Article  PubMed  Google Scholar 

  28. Koga M, Yamamoto H, Inoue M, Asakura K, Aoki J, Hamasaki T, Kanzawa T, Kondo R, Ohtaki M, Itabashi R et al (2020) Thrombolysis with alteplase at 0.6 Mg/Kg for stroke with unknown time of onset: a randomized controlled trial. Stroke J Cerebral Circ. 51:1530–1538

    Article  CAS  Google Scholar 

  29. Campbell BCV, Ma H, Ringleb PA, Parsons MW, Churilov L, Bendszus M, Levi CR, Hsu C, Kleinig TJ, Fatar M, et al (2019) Extending thrombolysis to 4.5–9 H and wake-up stroke using perfusion imaging: a systematic review and meta-analysis of individual patient data. Lancet

  30. Thomalla G, Boutitie F, Ma H, Koga M, Ringleb P, Schwamm Lh, Wu O, Bendszus M, Bladin CF, Campbell BCV et al (2020) Intravenous alteplase for stroke with unknown time of onset guided by advanced imaging: systematic review and meta-analysis of individual patient data. Lancet 396:1574–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, Mctaggart RA, Torbey MT, Kim-Tenser M, Leslie-Mazwi T et al (2018) Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 378:708–718

    Article  PubMed  PubMed Central  Google Scholar 

  32. Scheldeman L, Wouters A, Boutitie F, Dupont P, Christensen S, Cheng B, Ebinger M, Endres M, Fiebach JB, Gerloff C et al (2020) Different mismatch concepts for magnetic resonance imaging-guided thrombolysis in unknown onset stroke. Ann Neurol 87:931–938

    Article  PubMed  Google Scholar 

  33. Barow E, Boutitie F, Cheng B, Cho T-H, Ebinger M, Endres M, Fiebach JB, Fiehler J, Ford I, Galinovic I, et al (2019) Functional outcome of intravenous thrombolysis in patients with lacunar infarcts in the wake-up trialfunctional outcome of intravenous thrombolysis in patients with lacunar infarcts in the wake-up trialfunctional outcome of intravenous thrombolysis in patients with lacunar infarcts in the wake-up trial

  34. Provost C, Soudant M, Legrand L, Ben Hassen W, Xie Y, Soize S, Bourcier R, Benzakoun J, Edjlali M, Boulouis G et al (2019) Magnetic resonance imaging or computed tomography before treatment in acute ischemic stroke. Stroke 50:659–664

    Article  PubMed  Google Scholar 

  35. Macha K, Hoelter P, Siedler G, Knott M, Schwab S, Doerfler A, Kallmunzer B, Engelhorn T (2020) Multimodal Ct or MRI for iv thrombolysis in ischemic stroke with unknown time of onset. Neurology 95:E2954–E2964

    Article  PubMed  Google Scholar 

  36. Nael K, Khan R, Choudhary G, Meshksar A, Villablanca P, Tay J, Drake K, Coull BM, Kidwell CS (2014) Six-minute magnetic resonance imaging protocol for evaluation of acute ischemic stroke: pushing the boundaries. Stroke 45:1985–1991

    Article  PubMed  Google Scholar 

  37. Simonsen CZ, Yoo AJ, Rasmussen M, Sorensen KE, Leslie-Mazwi T, Andersen G, Sorensen LH (2018) Magnetic resonance imaging selection for endovascular stroke therapy: workflow in the goliath trial. Stroke 49:1402–1406

    Article  PubMed  Google Scholar 

  38. Brazzelli M, Sandercock PAG, Chappell FM, Celani MG, Righetti E, Arestis N, Wardlaw JM, Deeks JJ (2009) Magnetic resonance imaging versus computed tomography for detection of acute vascular lesions in patients presenting with stroke symptoms. Cochrane Database Syst Rev

  39. Vagal A, Wintermark M, Nael K, Bivard A, Parsons M, Grossman AW, Khatri P (2019) Automated Ct perfusion imaging for acute ischemic stroke: pearls and pitfalls for real-world use. Neurology 93:888–898

    Article  PubMed  Google Scholar 

  40. Demeestere J, Wouters A, Christensen S, Lemmens R, Lansberg MG (2020) Review of perfusion imaging in acute ischemic stroke: from time to tissue. Stroke 51:1017–1024

    Article  PubMed  Google Scholar 

  41. Tanswell P, Modi N, Combs D, Danays T (2002) Pharmacokinetics and pharmacodynamics of tenecteplase in fibrinolytic therapy of acute myocardial infarction. Clin Pharmacokinet 41:1229–1245

    Article  CAS  PubMed  Google Scholar 

  42. Haley EC Jr, Thompson JL, Grotta JC, Lyden PD, Hemmen TG, Brown DL, Fanale C, Libman R, Kwiatkowski TG, Llinas RH et al (2010) Phase Iib/Iii trial of tenecteplase in acute ischemic stroke: results of a prematurely terminated randomized clinical trial. Stroke 41:707–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parsons M, Spratt N, Bivard A, Campbell B, Chung K, Miteff F, O’brien B, Bladin C, Mcelduff P, Allen C et al (2012) A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. N Engl J Med 366:1099–1107

    Article  CAS  PubMed  Google Scholar 

  44. Huang X, Cheripelli BK, Lloyd SM, Kalladka D, Moreton FC, Siddiqui A, Ford I, Muir KW (2015) Alteplase versus tenecteplase for thrombolysis after ischaemic stroke (Attest): a phase 2, randomised, open-label, blinded endpoint study. Lancet Neurol 14:368–376

    Article  CAS  PubMed  Google Scholar 

  45. Logallo N, Novotny V, Assmus J, Kvistad CE, Alteheld L, Ronning OM, Thommessen B, Amthor KF, Ihle-Hansen H, Kurz M et al (2017) Tenecteplase versus alteplase for management of acute ischaemic stroke (Nor-Test): a phase 3, randomised, open-label, blinded endpoint trial. Lancet Neurol 16:781–788

    Article  CAS  PubMed  Google Scholar 

  46. Campbell BCV, Mitchell PJ, Churilov L, Yassi N, Kleinig TJ, Dowling RJ, Yan B, Bush SJ, Dewey HM, Thijs V et al (2018) Tenecteplase versus alteplase before thrombectomy for ischemic stroke. N Engl J Med 378:1573–1582

    Article  CAS  PubMed  Google Scholar 

  47. Ahmed HK, Logallo N, Thomassen L, Aamodt AH, Kurz M (2018) Tenecteplase in wake-up stroke-results of the nor-test study. Eur Stroke J 3:105

    Google Scholar 

  48. Sarraj A, Hassan AE, Savitz S, Sitton C, Grotta J, Chen P, Cai C, Cutter G, Imam B, Reddy S et al (2019) Outcomes of endovascular thrombectomy vs medical management alone in patients with large ischemic cores: a secondary analysis of the optimizing patient’s selection for endovascular treatment in acute ischemic stroke (select) study. Jama Neurol 76:1147–1156

    Article  PubMed  PubMed Central  Google Scholar 

  49. Roman LS, Menon BK, Blasco J, Hernandez-Perez M, Davalos A, Majoie C, Campbell BCV, Guillemin F, Lingsma H, Anxionnat R et al (2018) Imaging features and safety and efficacy of endovascular stroke treatment: a meta-analysis of individual patient-level data. Lancet Neurol 17:895–904

    Article  PubMed  Google Scholar 

  50. Seners P, Oppenheim C, Turc G, Albucher JF, Guenego A, Raposo N, Christensen S, Calviere L, Viguier A, Darcourt J, et al (2021) Perfusion imaging and clinical outcome in acute ischemic stroke with large core. Ann Neurol

  51. Olivot JM, Albucher JF, Guenego A, Thalamas C, Mlynash M, Rousseau V, Drif A, Christensen S, Sommet A, Viguier A et al (2021) Mismatch profile influences outcome after mechanical thrombectomy. Stroke 52:232–240

    Article  PubMed  Google Scholar 

  52. Straka M, Albers GW, Bammer R (2010) Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magn Reson Imaging 32:1024–1037

    Article  PubMed  PubMed Central  Google Scholar 

  53. Meijs M, Christensen S, Lansberg MG, Albers GW, Calamante F (2016) Analysis of perfusion MRI in stroke: to deconvolve, or not to deconvolve. Magn Reson Med 76:1282–1290

    Article  PubMed  Google Scholar 

  54. Austein F, Riedel C, Kerby T, Meyne J, Binder A, Lindner T, Huhndorf M, Wodarg F, Jansen O (2016) Comparison of perfusion Ct software to predict the final infarct volume after thrombectomy. Stroke 47:2311–2317

    Article  PubMed  Google Scholar 

  55. Wouters A, Robben D, Christensen S, Marquering Ha, Roos Y, Van Oostenbrugge RJ, Van Zwam WH, Dippel DWJ, Majoie C, Schonewille WJ, et al (2021) Prediction of stroke infarct growth rates by baseline perfusion imaging. Stroke Strokeaha121034444

  56. Fischer U, Kaesmacher J, Mendes Pereira V, Chapot R, Siddiqui AH, Froehler MT, Cognard C, Furlan AJ, Saver JL, Gralla J (2017) Direct mechanical thrombectomy versus combined intravenous and mechanical thrombectomy in large-artery anterior circulation stroke: a topical review. Stroke 48:2912–2918

    Article  PubMed  Google Scholar 

  57. Yaghi S, Raz E, Dehkharghani S, Riina H, Mctaggart R, Jayaraman M, Prabhakaran S, Liebeskind DS, Khatri P, Mac Grory B, et al (2021) Penumbra consumption rates based on time-to-maximum delay and reperfusion status: a post hoc analysis of the defuse 3 trial. Stroke Strokeaha120033806

  58. Christensen S, Mlynash M, Kemp S, Yennu A, Heit JJ, Marks MP, Lansberg MG, Albers GW (2019) Persistent target mismatch profile >24 hours after stroke onset in defuse 3. Stroke 50:754–757

    Article  PubMed  Google Scholar 

  59. Kim BJ, Menon BK, Kim JY, Shin DW, Baik SH, Jung C, Han MK, Demchuk A, Bae HJ (2020) Endovascular treatment after stroke due to large vessel occlusion for patients presenting very late from time last known well. Jama Neurol

  60. Desai SM, Haussen DC, Aghaebrahim A, Al-Bayati AR, Santos R, Nogueira RG, Jovin TG, Jadhav AP (2018) Thrombectomy 24 hours after stroke: beyond dawn. J Neurointerv Surg. 10:1039–1042

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

L.S. is supported by Research Foundation Flanders, PhD fellowship fundamental research 1193620N. R.L. is senior clinical investigator of Research foundation Flanders.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

LS, AW, and RL drafted and revised the manuscript.

Corresponding author

Correspondence to Lauranne Scheldeman.

Ethics declarations

Conflicts of interest

L.S. reports grants from Research Foundation Flanders during the conduct of the study; other (congress participation) from Daiichi Sankyo outside the submitted work. R.L. has no personal disclosures, but reports consultancy fees paid to the institution from Ischemaview and Boehringer-Ingelheim. A.W. has nothing to report.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scheldeman, L., Wouters, A. & Lemmens, R. Imaging selection for reperfusion therapy in acute ischemic stroke beyond the conventional time window. J Neurol 269, 1715–1723 (2022). https://doi.org/10.1007/s00415-021-10872-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10872-4

Keywords

  • Ischemic stroke
  • Magnetic resonance imaging
  • Computed tomography
  • Reperfusion treatment