Skip to main content
Log in

Brain network topology and future development of freezing of gait in Parkinson’s disease: a longitudinal study

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Freezing of gait (FOG) is a common disabling gait disturbance in Parkinson’s disease (PD). The objectives of this study were to explore alterations in the topological organization of whole-brain functional networks in patients with PD who will develop FOG.

Methods

We recruited 20 patients with PD who developed FOG (PD-FOGt) during a 5-year follow-up period, 20 patients with PD who did not developed FOG (PD-FOGn) within the follow-up period, and 20 healthy control subjects. Using graph theory approaches, we performed a comparative analysis of the topological organization of whole-brain functional networks among the groups, and further explored their potential relationships with latency to develop FOG.

Results

At baseline, the global topological properties of functional brain networks in PD-FOGt and PD-FOGn showed no abnormalities. Additionally, regarding regional topological properties, compared with PD-FOGn patients, PD-FOGt patients exhibited decreased nodal centrality in the left middle frontal gyrus (MFG). Although there were no significant differences compared with PD-FOGn patients, the PD-FOGt group exhibited the lowest nodal centrality values in the frontal cortex (left gyrus rectus), and visual cortex (bilateral inferior occipital gyrus and left fusiform gyrus), and the highest nodal centrality values in the cerebellum (vermis_6) among the three groups. However, no relationship was found between the nodal centrality in above brain regions and latency to develop FOG.

Conclusion

This study demonstrates the disrupted regional topological organization might contribute to the future development of FOG in PD patients, especially associated with damage to the left MFG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data

Data are available from the corresponding author, upon reasonable request.

Code availability

Not applicable.

References

  1. Nutt JG, Bloem BR, Giladi N et al (2011) Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 10:734–744. https://doi.org/10.1016/S1474-4422(11)70143-0

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhang WS, Gao C, Tan YY et al (2021) Prevalence of freezing of gait in Parkinson’s disease: a systematic review and meta-analysis. J Neurol. https://doi.org/10.1007/s00415-021-10685-5

    Article  PubMed  Google Scholar 

  3. Okuma Y, Silva de Lima AL, Fukae J et al (2018) A prospective study of falls in relation to freezing of gait and response fluctuations in Parkinson’s disease. Parkinsonism Relat Disord 46:30–35. https://doi.org/10.1016/j.parkreldis.2017.10.013

    Article  PubMed  Google Scholar 

  4. Nonnekes J, Snijders AH, Nutt JG et al (2015) Freezing of gait: a practical approach to management. Lancet Neurol 14:768–778. https://doi.org/10.1016/s1474-4422(15)00041-1

    Article  PubMed  Google Scholar 

  5. Prajapati R, Emerson IA (2020) Construction and analysis of brain networks from different neuroimaging techniques. Int J Neurosci. https://doi.org/10.1080/00207454.2020.1837802

    Article  PubMed  Google Scholar 

  6. Mennes M, Kelly C, Zuo XN et al (2010) Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity. Neuroimage 50:1690–1701. https://doi.org/10.1016/j.neuroimage.2010.01.002

    Article  PubMed  Google Scholar 

  7. Fling BW, Cohen RG, Mancini M et al (2014) Functional reorganization of the locomotor network in Parkinson patients with freezing of gait. PLoS ONE 9:e100291. https://doi.org/10.1371/journal.pone.0100291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang M, Jiang S, Yuan Y et al (2016) Alterations of functional and structural connectivity of freezing of gait in Parkinson’s disease. J Neurol 263:1583–1592. https://doi.org/10.1007/s00415-016-8174-4

    Article  CAS  PubMed  Google Scholar 

  9. Gilat M, Ehgoetz Martens KA, Miranda-Domínguez O et al (2018) Dysfunctional limbic circuitry underlying freezing of gait in Parkinson’s disease. Neuroscience 374:119–132. https://doi.org/10.1016/j.neuroscience.2018.01.044

    Article  CAS  PubMed  Google Scholar 

  10. Tessitore A, Amboni M, Esposito F et al (2012) Resting-state brain connectivity in patients with Parkinson’s disease and freezing of gait. Parkinsonism Relat Disord 18:781–787. https://doi.org/10.1016/j.parkreldis.2012.03.018

    Article  PubMed  Google Scholar 

  11. Canu E, Agosta F, Sarasso E et al (2015) Brain structural and functional connectivity in Parkinson’s disease with freezing of gait. Hum Brain Mapp 36:5064–5078. https://doi.org/10.1002/hbm.22994

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bharti K, Suppa A, Pietracupa S et al (2020) Aberrant functional connectivity in patients with Parkinson’s disease and freezing of gait: a within- and between-network analysis. Brain Imaging Behav 14:1543–1554. https://doi.org/10.1007/s11682-019-00085-9

    Article  PubMed  Google Scholar 

  13. Ehgoetz Martens KA, Hall JM, Georgiades MJ et al (2018) The functional network signature of heterogeneity in freezing of gait. Brain. https://doi.org/10.1093/brain/awy019

    Article  PubMed  Google Scholar 

  14. Weiss D, Schoellmann A, Fox MD et al (2020) Freezing of gait: understanding the complexity of an enigmatic phenomenon. Brain 143:14–30. https://doi.org/10.1093/brain/awz314

    Article  PubMed  Google Scholar 

  15. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198. https://doi.org/10.1038/nrn2575

    Article  CAS  PubMed  Google Scholar 

  16. Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 7:113–140. https://doi.org/10.1146/annurev-clinpsy-040510-143934

    Article  PubMed  Google Scholar 

  17. He Y, Evans A (2010) Graph theoretical modeling of brain connectivity. Curr Opin Neurol 23:341–350. https://doi.org/10.1097/WCO.0b013e32833aa567

    Article  PubMed  Google Scholar 

  18. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003

    Article  PubMed  Google Scholar 

  19. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701. https://doi.org/10.1103/PhysRevLett.87.198701

    Article  CAS  PubMed  Google Scholar 

  20. Hall JM, Shine JM, Ehgoetz Martens KA et al (2018) Alterations in white matter network topology contribute to freezing of gait in Parkinson’s disease. J Neurol 265:1353–1364. https://doi.org/10.1007/s00415-018-8846-3

    Article  PubMed  Google Scholar 

  21. Maidan I, Jacob Y, Giladi N et al (2019) Altered organization of the dorsal attention network is associated with freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord 63:77–82. https://doi.org/10.1016/j.parkreldis.2019.02.036

    Article  PubMed  Google Scholar 

  22. Ruan X, Li Y, Li E et al (2020) Impaired topographical organization of functional brain networks in Parkinson’s disease patients with freezing of gait. Front Aging Neurosci 12:580564. https://doi.org/10.3389/fnagi.2020.580564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li N, Suo X, Zhang J et al (2021) Disrupted functional brain network topology in Parkinson’s disease patients with freezing of gait. Neurosci Lett 759:135970. https://doi.org/10.1016/j.neulet.2021.135970

    Article  CAS  PubMed  Google Scholar 

  24. Guo M, Ren Y, Yu H et al (2020) Alterations in degree centrality and functional connectivity in Parkinson’s disease patients with freezing of gait: a resting-state functional magnetic resonance imaging study. Front Neurosci 14:582079. https://doi.org/10.3389/fnins.2020.582079

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hughes AJ, Daniel SE, Kilford L et al (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184. https://doi.org/10.1136/jnnp.55.3.181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bharti K, Suppa A, Pietracupa S et al (2019) Abnormal cerebellar connectivity patterns in patients with Parkinson’s disease and freezing of gait. Cerebellum (London, England) 18:298–308. https://doi.org/10.1007/s12311-018-0988-4

    Article  Google Scholar 

  27. Zhou C, Zhong X, Yang Y et al (2018) Alterations of regional homogeneity in freezing of gait in Parkinson’s disease. J Neurol Sci 387:54–59. https://doi.org/10.1016/j.jns.2018.01.021

    Article  PubMed  Google Scholar 

  28. Tomlinson CL, Stowe R, Patel S et al (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25:2649–2653. https://doi.org/10.1002/mds.23429

    Article  PubMed  Google Scholar 

  29. Wang J, Wang X, Xia M et al (2015) GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci 9:386. https://doi.org/10.3389/fnhum.2015.00386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fox MD, Zhang D, Snyder AZ et al (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101:3270–3283. https://doi.org/10.1152/jn.90777.2008

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang J, Wang J, Wu Q et al (2011) Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry 70:334–342. https://doi.org/10.1016/j.biopsych.2011.05.018

    Article  PubMed  Google Scholar 

  32. Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3:e17. https://doi.org/10.1371/journal.pcbi.0030017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393:440–442. https://doi.org/10.1038/30918

    Article  CAS  PubMed  Google Scholar 

  34. Chayer C, Freedman M (2001) Frontal lobe functions. Curr Neurol Neurosci Rep 1:547–552. https://doi.org/10.1007/s11910-001-0060-4

    Article  CAS  PubMed  Google Scholar 

  35. Takakusaki K (2017) Functional neuroanatomy for posture and gait control. J Mov Disord 10:1–17. https://doi.org/10.14802/jmd.16062

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jha M, Jhunjhunwala K, Sankara BB et al (2015) Neuropsychological and imaging profile of patients with Parkinson’s disease and freezing of gait. Parkinsonism Relat Disord 21:1184–1190. https://doi.org/10.1016/j.parkreldis.2015.08.009

    Article  PubMed  Google Scholar 

  37. Matar E, Shine JM, Naismith SL et al (2013) Using virtual reality to explore the role of conflict resolution and environmental salience in freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord 19:937–942. https://doi.org/10.1016/j.parkreldis.2013.06.002

    Article  PubMed  Google Scholar 

  38. Ou R, Wei Q, Cao B et al (2018) Predictors of freezing of gait in Chinese patients with Parkinson’s disease. Brain Behav 8:e00931. https://doi.org/10.1002/brb3.931

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ehgoetz Martens KA, Lukasik EL, Georgiades MJ et al (2018) Predicting the onset of freezing of gait: a longitudinal study. Mov Disord 33:128–135. https://doi.org/10.1002/mds.27208

    Article  PubMed  Google Scholar 

  40. Lee MS, Kim HS, Lyoo CH (2005) “Off” gait freezing and temporal discrimination threshold in patients with Parkinson disease. Neurology 64:670–674. https://doi.org/10.1212/01.wnl.0000151961.14861.ba

    Article  PubMed  Google Scholar 

  41. Zhou Y, Zhao J, Hou Y et al (2019) Dopaminergic pathway and primary visual cortex are involved in the freezing of gait in Parkinson’s disease: a PET-CT study. Neuropsychiatr Dis Treat 15:1905–1914. https://doi.org/10.2147/ndt.s197879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gilat M, Shine JM, Walton CC et al (2015) Brain activation underlying turning in Parkinson’s disease patients with and without freezing of gait: a virtual reality fMRI study. NPJ Parkinson’s disease 1:15020. https://doi.org/10.1038/npjparkd.2015.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barthel C, Nonnekes J, van Helvert M et al (2018) The laser shoes: a new ambulatory device to alleviate freezing of gait in Parkinson disease. Neurology 90:e164–e171. https://doi.org/10.1212/wnl.0000000000004795

    Article  PubMed  Google Scholar 

  44. Schweder PM, Hansen PC, Green AL et al (2010) Connectivity of the pedunculopontine nucleus in parkinsonian freezing of gait. NeuroReport 21:914–916. https://doi.org/10.1097/WNR.0b013e32833ce5f1

    Article  PubMed  Google Scholar 

  45. Fasano A, Laganiere SE, Lam S et al (2017) Lesions causing freezing of gait localize to a cerebellar functional network. Ann Neurol 81:129–141. https://doi.org/10.1002/ana.24845

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jung JH, Kim BH, Chung SJ et al (2020) motor cerebellar connectivity and future development of freezing of gait in de novo Parkinson’s disease. Mov Disord 35:2240–2249. https://doi.org/10.1002/mds.28243

    Article  PubMed  Google Scholar 

  47. Lewis SJ, Barker RA (2009) A pathophysiological model of freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord 15:333–338. https://doi.org/10.1016/j.parkreldis.2008.08.006

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the patients for their generous participations.

Funding

This work was supported by the National Natural Science Foundation of China (81801272), Sichuan Science and Technology Program (2018HH0077), Fundamental Research Funds for the Central Universities (2018SCU12029), and Post-Doctor Research Project, West China Hospital, Sichuan University (2018HXBH085).

Author information

Authors and Affiliations

Authors

Contributions

NNL was responsible for the study concept, statistical analysis, and drafting and revision of the manuscript. DL was responsible for the study concept and revision of the manuscript. JXP, XLS, JYL, LRD, and CLC contributed to patient recruitment and data collection. QYG was responsible for the supervision of the study. RP was responsible for the study concept, supervision, and revision of the manuscript. All authors approved the final version of the manuscript for submission.

Corresponding author

Correspondence to Rong Peng.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

This study was approved by the Ethics Committee of Sichuan University. Written informed consent was obtained from all participants before enrollment and the study was conducted in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Supplementary Information

Below is the link to the electronic supplementary material.

415_2021_10817_MOESM1_ESM.tif

Fig. S1 Graphs show that over the defined threshold range, the functional brain networks in the total PD, PD-FOGt, PD-FOGn, and HC groups exhibited a value of γ that was substantially larger than 1 and λ approximately equal to 1, indicating that all groups exhibited typical small-world features. PD Parkinson’s disease, FOG freezing of gait, PD-FOGt group for FOG-transitional PD, PD-FOGn group for FOG-nontransitional PD, HC healthy controls, γ normalized clustering coefficient, λ normalized characteristic path length

415_2021_10817_MOESM2_ESM.tif

Fig. S2 Comparison of the global topological properties of functional brain networks between the total PD and HC groups and among the three groups. PD Parkinson’s disease, FOG freezing of gait, PD-FOGt group for FOG-transitional PD, PD-FOGn group for FOG-nontransitional PD, HC healthy controls, Cp clustering coefficient, Lp characteristic path length, γ normalized clustering coefficient, λ normalized characteristic path length, σ small-worldness, Eglob global efficiency, Eloc local efficiency

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Lei, D., Peng, J. et al. Brain network topology and future development of freezing of gait in Parkinson’s disease: a longitudinal study. J Neurol 269, 2503–2512 (2022). https://doi.org/10.1007/s00415-021-10817-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10817-x

Keywords

Navigation