Skip to main content

Advertisement

Log in

Disrupted structural connectome and neurocognitive functions in Duchenne muscular dystrophy: classifying and subtyping based on Dp140 dystrophin isoform

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Objective

Neurocognitive disabilities in Duchenne muscular dystrophy (DMD) children beginning in early childhood and distal DMD gene deletions involving disruption of Dp140 isoform are more likely to manifest significant neurocognitive impairments. MRI data analysis techniques like brain-network metrics can provide information on microstructural integrity and underlying pathophysiology.

Methods

A prospective study on 95 participants [DMD = 57, and healthy controls (HC) = 38]. The muscular dystrophy functional rating scale (MDFRS) scores, neuropsychology batteries, and multiplex ligand-dependent probe amplification (MLPA) testing were used for clinical assessment, IQ estimation, and genotypic classification. Diffusion MRI and network-based statistics were used to analyze structural connectomes at various levels and correlate with clinical markers.

Results

Motor and executive sub-networks were extracted and analyzed. Out of 57 DMD children, 23 belong to Dp140 + and 34 to Dp140- subgroup. Motor disabilities are pronounced in Dp140- subgroup as reflected by lower MDFRS scores. IQ parameters are significantly low in all-DMD cases; however, the Dp140- has specifically lowest scores. Significant differences were observed in global efficiency, transitivity, and characteristic path length between HC and DMD. Subgroup analysis demonstrates that the significance is mainly driven by participants with Dp140- than Dp140 + isoform. Finally, a random forest classifier model illustrated an accuracy of 79% between HC and DMD and 90% between DMD- subgroups.

Conclusions

Current findings demonstrate structural network-based characterization of abnormalities in DMD, especially prominent in Dp140-. Our observations suggest that participants with Dp140 + have relatively intact connectivity while Dp140- show widespread connectivity alterations at global, nodal, and edge levels. This study provides valuable insights supporting the genotype–phenotype correlation of brain-behavior involvement in DMD children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Anonymized data not published within this article will be made available to any appropriately qualified investigator, based on a valid request through the corresponding author.

Code availability (software application or custom code)

Not Applicable.

Abbreviations

DMD:

Duchenne muscular dystrophy

MRI:

Magnetic resonance imaging

DTI:

Diffusion tensor imaging

FA:

Fractional anisotropy

MD:

Mean diffusivity

MLPA:

Multiplex ligation-dependent probe amplification

MDFRS:

Muscular dystrophy functional rating scale

NBS:

Network-based statistics

SC:

Structural connectome

References

  1. Miller G, Wessel HB (1993) Diagnosis of dystrophinopathies: review for the clinician. Pediatr Neurol 9:3–9. https://doi.org/10.1016/0887-8994(93)90002-t

    Article  PubMed  Google Scholar 

  2. Allen DG, Whitehead NP, Froehner SC (2016) Absence of dystrophin disrupts skeletal muscle signaling: roles of Ca2+, reactive oxygen species, and nitric oxide in the development of muscular dystrophy. Physiol Rev 96:253–305. https://doi.org/10.1152/physrev.00007.2015

    Article  CAS  PubMed  Google Scholar 

  3. Filippo TD, Parisi L, Roccella M (2012) Psychological aspects in children affected by duchenne de boulogne muscular dystrophy. Ment Illn 4:e5. https://doi.org/10.4081/mi.2012.e5

    Article  PubMed  Google Scholar 

  4. Orsini M, Carolina A, de Ferreira AF et al (2018) Cognitive impairment in neuromuscular diseases: a systematic review. Neurol Int 10:7473. https://doi.org/10.4081/ni.2018.7473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Li G, Jiang W, Du Y, Rossbach K (2017) Intelligence profiles of Chinese school-aged boys with high-functioning ASD and ADHD. Neuropsychiatr Dis Treat 13:1541–1549. https://doi.org/10.2147/NDT.S136477

    Article  PubMed Central  PubMed  Google Scholar 

  6. Naidoo M, Anthony K (2020) Dystrophin Dp71 and the neuropathophysiology of duchenne muscular dystrophy. Mol Neurobiol 57:1748–1767. https://doi.org/10.1007/s12035-019-01845-w

    Article  CAS  PubMed  Google Scholar 

  7. Anand A, Tyagi R, Mohanty M et al (2015) Dystrophin induced cognitive impairment: mechanisms, models and therapeutic strategies. Ann Neurosci 22:108–118. https://doi.org/10.5214/ans.0972.7531.221210

    Article  PubMed Central  PubMed  Google Scholar 

  8. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11:805–821. https://doi.org/10.1006/nimg.2000.0582

    Article  CAS  PubMed  Google Scholar 

  9. Fu Y, Dong Y, Zhang C et al (2016) Diffusion tensor imaging study in Duchenne muscular dystrophy. Ann Transl Med 4:109. https://doi.org/10.21037/atm.2016.03.19

    Article  PubMed Central  PubMed  Google Scholar 

  10. Doorenweerd N, Straathof CS, Dumas EM et al (2014) Reduced cerebral gray matter and altered white matter in boys with Duchenne muscular dystrophy. Ann Neurol 76:403–411. https://doi.org/10.1002/ana.24222

    Article  CAS  PubMed  Google Scholar 

  11. Doorenweerd N, Mahfouz A, van Putten M et al (2017) Timing and localization of human dystrophin isoform expression provide insights into the cognitive phenotype of Duchenne muscular dystrophy. Sci Rep 7:12575. https://doi.org/10.1038/s41598-017-12981-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Preethish-Kumar V, Shah A, Kumar M et al (2020) In Vivo evaluation of white matter abnormalities in children with Duchenne muscular dystrophy using DTI. AJNR Am J Neuroradiol 41:1271–1278. https://doi.org/10.3174/ajnr.A6604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Li J, Shi Y, Toga AW (2016) Mapping brain anatomical connectivity using diffusion magnetic resonance imaging: structural connectivity of the human brain. IEEE Signal Process Mag 33:36–51. https://doi.org/10.1109/MSP.2015.2510024

    Article  PubMed Central  PubMed  Google Scholar 

  14. Shah A, Lenka A, Saini J et al (2017) Altered brain wiring in Parkinson’s disease: a structural connectome-based analysis. Brain Connect 7:347–356. https://doi.org/10.1089/brain.2017.0506

    Article  PubMed  Google Scholar 

  15. Prasad S, Pandey U, Saini J et al (2019) Atrophy of cerebellar peduncles in essential tremor: a machine learning-based volumetric analysis. Eur Radiol 29:7037–7046. https://doi.org/10.1007/s00330-019-06269-7

    Article  PubMed  Google Scholar 

  16. Lue Y-J, Su C-Y, Yang R-C et al (2006) Development and validation of a muscular dystrophy-specific functional rating scale. Clin Rehabil 20:804–817. https://doi.org/10.1177/0269215506070809

    Article  PubMed  Google Scholar 

  17. Steffensen BF, Lyager S, Werge B et al (2002) Physical capacity in non-ambulatory people with Duchenne muscular dystrophy or spinal muscular atrophy: a longitudinal study. Dev Med Child Neurol 44:623–632. https://doi.org/10.1017/s0012162201002663

    Article  PubMed  Google Scholar 

  18. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113. https://doi.org/10.1016/0028-3932(71)90067-4

    Article  CAS  PubMed  Google Scholar 

  19. Walker LS, Greene JW (1991) The functional disability inventory: measuring a neglected dimension of child health status. J Pediatr Psychol 16:39–58. https://doi.org/10.1093/jpepsy/16.1.39

    Article  CAS  PubMed  Google Scholar 

  20. Jones-Gotman M (1986) Memory for designs: the hippocampal contribution. Neuropsychologia 24:193–203. https://doi.org/10.1016/0028-3932(86)90052-7

    Article  CAS  PubMed  Google Scholar 

  21. Desikan RS, Ségonne F, Fischl B et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021

    Article  PubMed  Google Scholar 

  22. Behrens TEJ, Berg HJ, Jbabdi S et al (2007) Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 34:144–155. https://doi.org/10.1016/j.neuroimage.2006.09.018

    Article  CAS  PubMed  Google Scholar 

  23. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003

    Article  PubMed  Google Scholar 

  24. Zalesky A, Fornito A, Bullmore ET (2010) Network-based statistic: identifying differences in brain networks. Neuroimage 53:1197–1207. https://doi.org/10.1016/j.neuroimage.2010.06.041

    Article  PubMed  Google Scholar 

  25. Pike N (2011) Using false discovery rates for multiple comparisons in ecology and evolution: False discovery rates for multiple comparisons. Methods Ecol Evol 2:278–282. https://doi.org/10.1111/j.2041-210X.2010.00061.x

    Article  Google Scholar 

  26. Bostan AC, Strick PL (2018) The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci 19:338–350. https://doi.org/10.1038/s41583-018-0002-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Power JD, Cohen AL, Nelson SM et al (2011) Functional network organization of the human brain. Neuron 72:665–678. https://doi.org/10.1016/j.neuron.2011.09.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Chen Q, Meng Z, Liu X et al (2018) Decision variants for the automatic determination of optimal feature subset in RF-RFE. Genes 9:301. https://doi.org/10.3390/genes9060301

    Article  CAS  PubMed Central  Google Scholar 

  29. Breiman L (2001) No title found. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  30. Taylor PJ, Betts GA, Maroulis S et al (2010) Dystrophin gene mutation location and the risk of cognitive impairment in Duchenne muscular dystrophy. PLoS ONE 5:e8803. https://doi.org/10.1371/journal.pone.0008803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Jin H, Tan S, Hermanowski J et al (2007) The dystrotelin, dystrophin and dystrobrevin superfamily: new paralogues and old isoforms. BMC Genomics 8:19. https://doi.org/10.1186/1471-2164-8-19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lidov HG, Selig S, Kunkel LM (1995) Dp140: a novel 140 kDa CNS transcript from the dystrophin locus. Hum Mol Genet 4:329–335. https://doi.org/10.1093/hmg/4.3.329

    Article  CAS  PubMed  Google Scholar 

  33. D’Angelo MG, Lorusso ML, Civati F et al (2011) Neurocognitive profiles in Duchenne muscular dystrophy and gene mutation site. Pediatr Neurol 45:292–299. https://doi.org/10.1016/j.pediatrneurol.2011.08.003

    Article  PubMed Central  PubMed  Google Scholar 

  34. Angelini C, Pinzan E (2019) Advances in imaging of brain abnormalities in neuromuscular disease. Ther Adv Neurol Disord 12:1756286419845567. https://doi.org/10.1177/1756286419845567

    Article  PubMed Central  PubMed  Google Scholar 

  35. Liu J, Li M, Pan Y et al (2017) Complex brain network analysis and its applications to brain disorders: a survey. Complexity 2017:1–27. https://doi.org/10.1155/2017/8362741

    Article  Google Scholar 

  36. Lv S-Y, Zou Q-H, Cui J-L et al (2011) Decreased gray matter concentration and local synchronization of spontaneous activity in the motor cortex in Duchenne muscular dystrophy. AJNR Am J Neuroradiol 32:2196–2200. https://doi.org/10.3174/ajnr.A2718

    Article  PubMed Central  PubMed  Google Scholar 

  37. Burns DP, Roy A, Lucking EF et al (2017) Sensorimotor control of breathing in the mdx mouse model of Duchenne muscular dystrophy. J Physiol (Lond) 595:6653–6672. https://doi.org/10.1113/JP274792

    Article  CAS  Google Scholar 

  38. Caudal D, François V, Lafoux A et al (2020) Characterization of brain dystrophins absence and impact in dystrophin-deficient Dmdmdx rat model. PLoS ONE 15:e0230083. https://doi.org/10.1371/journal.pone.0230083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Anderson JL, Head SI, Rae C, Morley JW (2002) Brain function in Duchenne muscular dystrophy. Brain 125:4–13. https://doi.org/10.1093/brain/awf012

    Article  CAS  PubMed  Google Scholar 

  40. Felisari G, Martinelli Boneschi F, Bardoni A et al (2000) Loss of Dp140 dystrophin isoform and intellectual impairment in Duchenne dystrophy. Neurology 55:559–564. https://doi.org/10.1212/wnl.55.4.559

    Article  CAS  PubMed  Google Scholar 

  41. Blitzblau R, Storer EK, Jacob MH (2008) Dystrophin and utrophin isoforms are expressed in glia, but not neurons, of the avian parasympathetic ciliary ganglion. Brain Res 1218:21–34. https://doi.org/10.1016/j.brainres.2008.04.071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Aranmolate A, Tse N, Colognato H (2017) Myelination is delayed during postnatal brain development in the mdx mouse model of Duchenne muscular dystrophy. BMC Neurosci 18:63. https://doi.org/10.1186/s12868-017-0381-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Carretta D, Santarelli M, Vanni D et al (2003) Cortical and brainstem neurons containing calcium-binding proteins in a murine model of Duchenne’s muscular dystrophy: selective changes in the sensorimotor cortex. J Comp Neurol 456:48–59. https://doi.org/10.1002/cne.10506

    Article  CAS  PubMed  Google Scholar 

  44. Carretta D, Santarelli M, Sbriccoli A et al (2004) Spatial analysis reveals alterations of parvalbumin- and calbindin-positive local circuit neurons in the cerebral cortex of mutant mdx mice. Brain Res 1016:1–11. https://doi.org/10.1016/j.brainres.2004.04.021

    Article  CAS  PubMed  Google Scholar 

  45. Rae MG, O’Malley D (2016) Cognitive dysfunction in Duchenne muscular dystrophy: a possible role for neuromodulatory immune molecules. J Neurophysiol 116:1304–1315. https://doi.org/10.1152/jn.00248.2016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Minciacchi D, Del Tongo C, Carretta D et al (2010) Alterations of the cortico-cortical network in sensori-motor areas of dystrophin deficient mice. Neuroscience 166:1129–1139. https://doi.org/10.1016/j.neuroscience.2010.01.040

    Article  CAS  PubMed  Google Scholar 

  47. Fritschy J-M, Panzanelli P, Tyagarajan SK (2012) Molecular and functional heterogeneity of GABAergic synapses. Cell Mol Life Sci 69:2485–2499. https://doi.org/10.1007/s00018-012-0926-4

    Article  CAS  PubMed  Google Scholar 

  48. Goodnough CL, Gao Y, Li X et al (2014) Lack of dystrophin results in abnormal cerebral diffusion and perfusion in vivo. Neuroimage 102:809–816. https://doi.org/10.1016/j.neuroimage.2014.08.053

    Article  CAS  PubMed  Google Scholar 

  49. Hwa H-L, Chang Y-Y, Chen C-H et al (2007) Multiplex ligation-dependent probe amplification identification of deletions and duplications of the Duchenne muscular dystrophy gene in Taiwanese subjects. J Formos Med Assoc 106:339–346. https://doi.org/10.1016/S0929-6646(09)60318-1

    Article  CAS  PubMed  Google Scholar 

  50. Vengalil S, Preethish-Kumar V, Polavarapu K et al (2017) Duchenne muscular dystrophy and Becker muscular dystrophy confirmed by multiplex ligation-dependent probe amplification: genotype-phenotype correlation in a large cohort. J Clin Neurol 13:91–97. https://doi.org/10.3988/jcn.2017.13.1.91

    Article  PubMed  Google Scholar 

  51. Doorenweerd N, Dumas EM, Ghariq E et al (2017) Decreased cerebral perfusion in Duchenne muscular dystrophy patients. Neuromuscul Disord 27:29–37. https://doi.org/10.1016/j.nmd.2016.10.005

    Article  PubMed  Google Scholar 

  52. Doorenweerd N (2020) Combining genetics, neuropsychology and neuroimaging to improve understanding of brain involvement in Duchenne muscular dystrophy—a narrative review. Neuromuscul Disord 30:437–442. https://doi.org/10.1016/j.nmd.2020.05.001

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge and convey our deepest gratitude to all the participants in this study including the young DMD boys, control subjects and their parents, who cooperated impeccably for MRI without even sedation. We also thank our radiographers who went out of the way to help complete the image acquisition of these children patiently even though busy doing regular clinical imaging services.

Funding

This study was partially supported by the educational grant from the “TVS-NIMHANS BURSARY” (grant support no.: TVSB/003/304/2015/00817).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed in this manuscript, reviewed and approved before submission. No authors have reported any conflict of interested related to this manuscript.

Corresponding authors

Correspondence to Jitender Saini or Madhura Ingalhalikar.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This study was carried out with consent from the appropriate Institutional ethics committee.

Consent to patriciate

The requirement for informed consent was waived-off due to retrospective nature of the study.

Consent for publication

The authors affirm that research participants provided informed consent for publication of the data.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6536 kb)

Supplementary file2 (DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preethish-Kumar, V., Shah, A., Polavarapu, K. et al. Disrupted structural connectome and neurocognitive functions in Duchenne muscular dystrophy: classifying and subtyping based on Dp140 dystrophin isoform. J Neurol 269, 2113–2125 (2022). https://doi.org/10.1007/s00415-021-10789-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10789-y

Keywords

Navigation