Skip to main content

Advertisement

Log in

Gastrointestinal dysfunction in Parkinson’s disease: molecular pathology and implications of gut microbiome, probiotics, and fecal microbiota transplantation

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Gastrointestinal symptoms and gut dysbiosis may occur before the onset of motor symptoms in Parkinson's disease (PD). Prediagnostic and prodromal features, such as constipation and α-synuclein pathology, can be detected several years before the clinical diagnosis of PD and have the potential to develop as early PD biomarkers. Environmental toxins and gut dysbiosis may trigger oxidative stress and mucosal inflammation, and initiate α-synuclein accumulation in the enteric nervous system, early in PD. Chronic gut inflammation can lead to a leaky gut and systemic inflammation, neuro inflammation, and neuro degeneration via gut–vagus–brain signaling or through blood–brain barrier permeability. Concepts regarding the gut–brain signaling in PD pathogenesis are changing rapidly and more investigation is required. The gut microbiota interacts with the human body by modulating the enteric and central nervous systems, and immune activity. Understanding the immune responses between gut microbiota and human body might help in elucidating the PD pathogenesis. As changes in gut microbiota composition might be associated with different clinical phenotypes of PD, gut microbiota-modulating interventions, such as probiotics and fecal microbiota transplantation (FMT), have the potential to restore the gut dysbiosis, reduce inflammation, and possibly modulate the clinical PD phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abbott RD, Petrovitch H, White LR, Masaki KH, Tanner CM, Curb JD et al (2001) Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology 57(3):456–462

    Article  CAS  PubMed  Google Scholar 

  2. Tan AH, Lim SY et al (2020) Helicobacter pylori eradication in Parkinson’s disease: a randomized placebo controlled trial. Mov Disord. https://doi.org/10.1002/mds.28248

    Article  PubMed  PubMed Central  Google Scholar 

  3. Angot E, Steiner JA, Hansen C, Li J-Y, Brundin P (2010) Are synucleinopathies prion-like disorders? Lancet Neurol 9(11):1128–1138

    Article  PubMed  Google Scholar 

  4. Bär F, Von Koschitzky H, Roblick U, Bruch HP, Schulze L, Sonnenborn U et al (2009) Cell-free supernatants of Escherichia coli Nissle 1917 modulate human colonic motility: evidence from an in vitro organ bath study. Neurogastroenterol Motil 21(5):559-e17

    Article  PubMed  Google Scholar 

  5. Barichella M, Pacchetti C, Bolliri C, Cassani E, Iorio L, Pusani C et al (2016) Probiotics and prebiotic fiber for constipation associated with Parkinson disease: an RCT. Neurology 87(12):1274–80

    Article  CAS  PubMed  Google Scholar 

  6. Barone P, Antonini A, Colosimo C, Macroni R, Morgante L, Avarello TP et al (2009) The PRIAMO study: a mulicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord 24:1641–9

    Article  PubMed  Google Scholar 

  7. Bhattacharyya D, Mohite GM, Krishnamoorthy J, Gayen N, Mehra S, Navalkar A et al (2019) Lipopolysaccharide from gut microbiota modulates α-synuclein aggregation and alters its biological function. ACS Chem Neurosci 10(5):2229–36

    Article  CAS  PubMed  Google Scholar 

  8. Bhattarai Y (2018) Microbiota-gut-brain axis: interaction of gut microbes and their metabolites with host epithelial barriers. Neurogastroenterol Motil 30(6):e13366

    Article  CAS  PubMed  Google Scholar 

  9. Boertien JM, Pereira PAB, Aho VTE, Scheperjans F (2019) Increasing comparability and utility of gut microbiome studies in Parkinson’s disease: a systematic review. J Parkinsons Dis 9(s2):S297-312

    Article  PubMed  PubMed Central  Google Scholar 

  10. Braak H, de Vos RAI, Bohl J, Del Tredici K (2006) Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396(1):67–72

    Article  CAS  PubMed  Google Scholar 

  11. Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rüb U (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249(3):1–5

    Article  Google Scholar 

  12. Breen DP, Halliday GM, Lang AE (2019) Gut-brain axis and the spread of α-synuclein pathology: Vagal highway or dead end? Mov Disord 34(3):307–16

    Article  PubMed  Google Scholar 

  13. Bueno L, Fargeas MJ, Fioramonti J, Honde C (1984) Effects of dopamine and bromocriptine on colonic motility in dog. Br J Pharmacol 82:35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cassani E, Privitera G, Pezzoli G, Pusani C, Madio C, Iorio L, Barichella M (2011) Use of probiotics for the treatment of constipation in Parkinson’s disease patients. Minerva Gastroenterol Dietol 57(2):117–21

    CAS  PubMed  Google Scholar 

  15. Chaudhuri KR, Odin P, Antonini A, Martinez-Martin P (2011) Parkinson’s disease: the non-motor issues. Parkinsonism Relat Disord 17:717–23

    Article  PubMed  Google Scholar 

  16. Chen SG, Stribinskis V, Rane MJ, Demuth DR, Gozal E, Roberts AM et al (2016) Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged fischer 344 rats and Caenorhabditis elegans. Sci Rep 6:34477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chenoll E, Casinos B, Bataller E, Astals P, Echevarría J, Iglesias JR et al (2011) Novel probiotic Bifidobacterium bifidum CECT 7366 strain active against the pathogenic bacterium Helicobacter pylori. Appl Environ Microbiol 77(4):1335–43

    Article  CAS  PubMed  Google Scholar 

  18. Colucci M, Cervio M, Faniglione M, De Angelis S, Pajoro M, Levandis G et al (2012) Intestinal dysmotility and enteric neurochemical changes in a Parkinson’s disease rat model. Auton Neurosci 169(2):77–86

    Article  CAS  PubMed  Google Scholar 

  19. Dive A, Foret F, Jamart J, Bulpa P, Installe’ E (2000) Effect of dopamine on gastrointestinal Motility during critical illness. Intensive Care Med 26:901–7. https://doi.org/10.1007/s001340051279

    Article  CAS  PubMed  Google Scholar 

  20. Dodiya HB, Forsyth CB, Voigt RM, Engen PA, Patel J, Shaikh M et al (2020) Chronic stress-induced gut dysfunction exacerbates Parkinson’s disease phenotype and pathology in a rotenone-induced mouse model of Parkinson’s disease. Neurobiol Dis 135:104352

    Article  CAS  PubMed  Google Scholar 

  21. Dutta SK, Verma S, Jain V, Surapaneni BK, Vinayek R, Phillips L et al (2019) Parkinson’s disease: the emerging role of gut dysbiosis, antibiotics, probiotics, and fecal microbiota transplantation. J Neurogastroenterol Motil 25(3):363–76

    Article  PubMed  PubMed Central  Google Scholar 

  22. Engelender S, Isacson O (2017) The threshold theory for Parkinson’s disease. Trends Neurosci 40(1):4–14

    Article  CAS  PubMed  Google Scholar 

  23. Fang X (2019) Microbial treatment: the potential application for Parkinson’s disease. Neurol Sci 40(1):51–8

    Article  PubMed  Google Scholar 

  24. Fecal Microbiota Transplantation as a Potential Treatment for Parkinson’s Disease. https://clinicaltrials.gov/ct2/show/NCT03876327. Accessed 25 October 2020

  25. Fecal Microbiota Transplantation for Parkinson’s Disease. https://clinicaltrials.gov/ct2/show/NCT03808389. Accessed 25 October 2020

  26. Fioramonti J, Fargeas MJ, Honde C, Bueno L (1984) Effects of central and peripheral administration of dopamine on pattern of intestinal motility in dogs. Dig Dis Sci 29:1023–7. https://doi.org/10.1007/BF01311254

    Article  CAS  PubMed  Google Scholar 

  27. Gazerani P (2019) Probiotics for Parkinson’s Disease. Int J Mol Sci 20(17):4121

    Article  CAS  PubMed Central  Google Scholar 

  28. Georgescu D, Ancusa OE, Georgescu LA, Ionita I, Reisz D (2016) Nonmotor gastrointestinal disorders in older patients with Parkinson’s disease: is there hope? Clin Interv Aging 11:1601–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gjerløff T, Fedorova T, Knudsen K, Munk OL, Nahimi A, Jacobsen S et al (2015) Imaging acetylcholinesterase density in peripheral organs in Parkinson’s disease with 11C-donepezil PET. Brain 138(Pt 3):653–63

    Article  PubMed  Google Scholar 

  30. Gorich R, Weiharauch TR, Kilbinger H (1982) The inhibition by dopamine of cholinergic Transmission in the isolated guinea-pig ileum.Mediation through alpha-adrenoceptors NauynSchmiedebergs. Arch pharmacol 318:308–12. https://doi.org/10.1007/BF00501170

    Article  CAS  Google Scholar 

  31. Heintz-Buschart A, Pandey U, Wicke T, Sixel-Döring F, Janzen A, Sittig-Wiegand E et al (2018) The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov Disord 33(1):88–98

    Article  CAS  PubMed  Google Scholar 

  32. Hemarajata P, Versalovic J (2013) Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therap Adv Gastroenterol 6(1):39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hollister EB, Gao C, Versalovic J (2014) Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 146(6):1449

    Article  PubMed  Google Scholar 

  34. Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Björklund T et al (2014) Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 128(6):805–20

    Article  PubMed  Google Scholar 

  35. Houser MC, Tansey MG (2017) The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinsons Dis 3:3

    Article  PubMed  PubMed Central  Google Scholar 

  36. Huang H, Xu H, Luo Q, He J, Li M, Chen H et al (2019) Fecal microbiota transplantation to treat Parkinson’s disease with constipation: a case report. Medicine (Baltimore) 98(26):e16163

    Article  Google Scholar 

  37. Ilie O-D, Ciobica A, McKenna J, Doroftei B, Mavroudis I (2020) Minireview on the relations between Gut Microflora and Parkinson’s Disease: further biochemical (oxidative stress), inflammatory, and neurological particularities. Oxid Med Cell Longev 2020:4518023

    Article  PubMed  PubMed Central  Google Scholar 

  38. Horsager J (2020) Katrine B Andersen et al, Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain 143(10):3077–3088. https://doi.org/10.1093/brain/awaa238

    Article  PubMed  Google Scholar 

  39. Kim C, Lv G, Lee JS, Jung BC, Masuda-Suzukake M, Hong C-S et al (2016) Exposure to bacterial endotoxin generates a distinct strain of α-synuclein fibril. Sci Rep 6:30891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim S, Kwon S-H, Kam T-I, Panicker N, Karuppagounder SS, Lee S et al (2019) Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103(4):627-641.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Knudsen K, Fedorova TD, Hansen AK, Sommerauer M, Otto M, Svendsen KB et al (2018) In-vivo staging of pathology in REM sleep behaviour disorder: a multimodality imaging case-control study. Lancet Neurol 17(7):618–28

    Article  PubMed  Google Scholar 

  42. Kvasnovsky CL, Bjarnason I, Donaldson AN, Sherwood RA, Papagrigoriadis S (2017) A randomized double-blind placebo-controlled trial of a multi-strain probiotic in treatment of symptomatic uncomplicated diverticular disease. Inflammopharmacology. https://doi.org/10.1007/s10787-017-0363-y

    Article  PubMed  Google Scholar 

  43. Leclair-Visonneau L, Neunlist M, Derkinderen P, Lebouvier T (2020) The gut in Parkinson’s disease: Bottom-up, top-down, or neither? Neurogastroenterol Motil 32(1):e13777

    Article  PubMed  Google Scholar 

  44. Leta V and K Ray Chaudhuri (2019) Gut microbiota and Parkinson’s disease: background and rationale of the SymPD study. Neurodigest http://neurodigest.co.uk/index.php/2019/10/20/gut-microbiota-and-parkinsons-disease-background-and-rationale-of-the-sympd-study/. Accessed 25 October 2020

  45. Levein NG, Thorn SE, Wattwil M (1999) Dopamine delays gastric emptying and prolongs orocaecal transit time in volunteers. Eur J Anaesthesiol 16:246–50

    Article  CAS  PubMed  Google Scholar 

  46. Li J-Y, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14(5):501–3

    Article  CAS  PubMed  Google Scholar 

  47. Lin C-H, Chen C-C, Chiang H-L, Liou J-M, Chang C-M, Lu T-P et al (2019) Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J Neuroinflammation 16(1):129

    Article  PubMed  PubMed Central  Google Scholar 

  48. Martinez-Martin P, Schapira AHV, Stocchi F, Sethi K, Odin P, MacPhee G et al (2007) Prevalence of nonmotor symptoms in Parkinson’s disease in an international setting; study using nonmotor symptoms questionnaire in 545 patients. Mov Disord 22(11):1623–9

    Article  PubMed  Google Scholar 

  49. Marzio L, Neri M, Di Giammarco AM, Cuccurullo F, Lanfranchi Ga (1986) Dopamine–induced migrating myoelectrical complex-like activity in human duodenum. Dig Dis Sci 31:349–54

    Article  CAS  PubMed  Google Scholar 

  50. Marzio L, Neri M, Pieramico O, Donne MD, Peeters Tl, Cuccurullo F (1990) Dopamine Interrupts gastrointestinal fed motility pattern in humans. Dig Dis Sci 35:327–32. https://doi.org/10.1007/BF01537410

    Article  CAS  PubMed  Google Scholar 

  51. Matheoud D, Cannon T, Voisin A, Penttinen A-M, Ramet L, Fahmy AM et al (2019) Intestinal infection triggers Parkinson’s disease-like symptoms in Pink1-/- mice. Nature 571(7766):565–9

    Article  CAS  PubMed  Google Scholar 

  52. Nishiwaki H, Mikako I et al (2020) Meta analysis of gut dysbiosis in Parkinson’s disease. Mov Disord 35:1626

    Article  CAS  PubMed  Google Scholar 

  53. O’Donovan SM, Crowley EK, Brown JR-M, O’Sullivan O, O’Leary OF, Timmons S et al (2020) Nigral overexpression of α-synuclein in a rat Parkinson’s disease model indicates alterations in the enteric nervous system and the gut microbiome. Neurogastroenterol Motil 32(1):e13726

    Article  PubMed  Google Scholar 

  54. Pan-Montojo F, Anichtchik O, Dening Y, Knels L, Pursche S, Jung R et al (2010) Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS ONE 5(1):e8762

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pellegrini C, Fornai M, Colucci R, Tirotta E, Blandini F, Levandis G et al (2016) Alteration of colonic excitatory tachykininergic motility and enteric inflammation following dopaminergic nigrostriatal neurodegeneration. J Neuroinflamm 13(1):146

    Article  Google Scholar 

  56. Borghammerand P, Van Den Berge N (2019) Brain-first versus gut-first Parkinson’s disease: a hypothesis. J Parkinsons Dis 9(suppl 2):1. https://doi.org/10.3233/JPD-191721

    Article  CAS  Google Scholar 

  57. Perez-Pardo P, Dodiya HB, Engen PA, Forsyth CB, Huschens AM, Shaikh M et al (2019) Role of TLR4 in the gut-brain axis in Parkinson’s disease: a translational study from men to mice. Gut 68(5):829–43

    Article  CAS  PubMed  Google Scholar 

  58. Perez-Pardo P, Kliest T, Dodiya HB, Broersen LM, Garssen J, Keshavarzian A et al (2017) The gut-brain axis in Parkinson’s disease: possibilities for food-based therapies. Eur J Pharmacol 15(817):86–95

    Article  Google Scholar 

  59. Pfeiffer RF (2003) Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol 2:107–16

    Article  PubMed  Google Scholar 

  60. Rao M, Gershon MD (2016) The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol 13(9):517–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rekdal M, Bess E, Emily P et al. (2019) Discovery and inhibition of an interspecies gut Bacterial pathway for Levodopa metabolism science

  62. Ruffmann C, Parkkinen L (2016) Gut feelings about α-synuclein in gastrointestinal biopsies: biomarker in the making? Mov Disord 31(2):193–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6):1469-1480.e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Santos SF, de Oliveira HL, Yamada ES, Neves BC, Pereira AJ (2019) The gut and Parkinson’s disease—a bidirectional pathway. Front Neurol 10:574

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sarah V, Melania M et al (2020) Genetic variants of TAS2R38 bitter taste receptor associate With district gut microbiota traits in Parkinson’s disease: a pilot study. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.09.056

    Article  Google Scholar 

  66. Scheperjans F, Aho V, Pereira PAB, Koskinen K, Paulin L, Pekkonen E et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30(3):350–8

    Article  PubMed  Google Scholar 

  67. Schrag A, Horsfall L, Walters K, Noyce A, Petersen I (2015) Prediagnostic presentations of Parkinson’s disease in primary care: a case-control study. Lancet Neurol 14(1):57–64

    Article  PubMed  Google Scholar 

  68. Shannon KM, Keshavarzian A, Dodiya HB, Jakate S, Kordower JH (2012) Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? evidence from 3 cases. Mov Disor 27(6):716–9

    Article  Google Scholar 

  69. Singh B, Mal G, Designer MF (2017) Probiotics: paving the way to living therapeutics. Trends Biotechnol 35(8):679–82

    Article  CAS  PubMed  Google Scholar 

  70. Sisson G, Ayis S, Sherwood RA, Bjarnason I (2014) Randomised clinical trial: A liquid multi-strain probiotic vs. placebo in the irritable bowel syndrome a 12 week double-blind study. Aliment Pharmacol Ther 40(1):51–62

    Article  CAS  PubMed  Google Scholar 

  71. Study of the Fecal Microbiome in Patients With Parkinson’s Disease. https://clinicaltrials.gov/ct2/show/NCT03671785. Accessed 25 October 2020

  72. Sun M-F, Zhu Y-L, Zhou Z-L, Jia X-B, Xu Y-D, Yang Q et al (2018) Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav Immun 70:48–60

    Article  CAS  PubMed  Google Scholar 

  73. Svensson E, Henderson VW, Borghammer P, Horváth-Puhó E, Sørensen HT (2016) Constipation and risk of Parkinson’s disease: a danish population-based cohort study. Parkinsonism Relat Disord 28:18–22

    Article  PubMed  Google Scholar 

  74. Svensson E, Horváth-Puhó E, Thomsen RW, Djurhuus JC, Pedersen L, Borghammer P et al (2015) Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol 78(4):522–9

    Article  PubMed  Google Scholar 

  75. Tamtaji OR, Taghizadeh M, Daneshvar Kakhaki R, Kouchaki E, Bahmani F, Borzabadi S et al (2019) Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: a randomized, double-blind, placebo-controlled trial. Clin Nutr 38(3):1031–5

    Article  CAS  PubMed  Google Scholar 

  76. Ulusoy A, Phillips RJ, Helwig M, Klinkenberg M, Powley TL, Di Monte DA (2017) Brain-to-stomach transfer of α-synuclein via vagal preganglionic projections. Acta Neuropathol 133(3):381–93

    Article  CAS  PubMed  Google Scholar 

  77. Horsager VJ, Andersen KB et al (2020) Brain- first versus body–first Parkinson’s disease: a multimodal imaging case control study. Brain 143(10):3077–3088

    Article  PubMed  Google Scholar 

  78. Van Den Berge N, Ferreira N, Gram H, Mikkelsen TW, Alstrup AKO, Casadei N et al (2019) Evidence for bidirectional and trans-synaptic parasympathetic and sympathetic propagation of alpha-synuclein in rats. Acta Neuropathol 138(4):535–50

    Article  Google Scholar 

  79. van Kessel SP, Frye AK, El-Gendy AO, Castejon M, Keshavarzian A, van Dijk G et al (2019) Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat Commun 10(1):310

    Article  PubMed  PubMed Central  Google Scholar 

  80. van Kessel SP, Frye AK, El-Gendy AO, Castejon M, Keshavarzian A, van Dijk G et al (2019) Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the Treatment of Parkinson’s disease. Nat Commun 10(1):31

    Google Scholar 

  81. van Kessel SP, Frye AK, El-Gendy AO, Castejon M, Keshvarzian A, van Dijk G et al (2019) Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat Commun. https://doi.org/10.1038/s41467-019-08294-y

    Article  PubMed  PubMed Central  Google Scholar 

  82. Visanji NP, Marras C, Hazrati L-N, Liu LWC, Lang AE (2014) Alimentary, my dear Watson? The challenges of enteric α-synuclein as a Parkinson’s disease biomarker. Mov Disord 29(4):444–50

    Article  PubMed  Google Scholar 

  83. Walter U, Tsiberidou P, Kersten M, Storch A, Löhle M (2018) Atrophy of the vagus nerve in parkinson’s disease revealed by high-resolution ultrasonography. Front Neurol 9:805

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wang H, Lee I-S, Braun C, Enck P (2016) Effect of probiotics on central nervous system functions in animals and humans: a systematic review. J Neurogastroenterol Motil 22(4):589–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang D, Zhao D, Ali Shah SZ, Wu W, Lai M, Zhang X et al (2019) The role of the gut microbiota in the pathogenesis of Parkinson’s disease. Front Neurol 10:1155

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yu X, Persillet M et al (2021) Evaluation of blood flow as a route for propagation in experimental synucleinopathy. Neurobiol Dis 150:105255. https://doi.org/10.1016/j.nbd.2021.105255

    Article  CAS  PubMed  Google Scholar 

  87. Zar MA, Ebong O, Bateman DN (1982) Effect of metoclopramide in guinea-pig il eum longitudinal muscle: evidence against dopamine-mediation. Gut 23:66–70. https://doi.org/10.1136/gut.23.1.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang X, Guo H, Xu J, Li Y, Li L, Zhang X et al (2012) Dopamine receptor D1 mediates the inhibition of dopamine on the distal colonic motility. Transl Res 159:407–14. https://doi.org/10.1016/j.trsl.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  89. Zis P, Erro R, Walton C et al (2015) The range and nature of non -motor symptoms in drug naïve Parkinson’s disease patinets: a state of the art systemic review. Npjparkkd 13:1

    Google Scholar 

Download references

Acknowledgement

The authors thank B. Mounika and Dr Natasha Das, Delhi for their support in drafting the article and revising it with inputs from the authors.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Metta.

Ethics declarations

Conflict of interest

The authors have nothing to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metta, V., Leta, V., Mrudula, K.R. et al. Gastrointestinal dysfunction in Parkinson’s disease: molecular pathology and implications of gut microbiome, probiotics, and fecal microbiota transplantation. J Neurol 269, 1154–1163 (2022). https://doi.org/10.1007/s00415-021-10567-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10567-w

Keywords

Navigation