Skip to main content
Log in

Longitudinal structural brain changes in Friedreich ataxia depend on disease severity: the IMAGE-FRDA study

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Friedreich ataxia is an inherited neurodegenerative disease, with cerebral and cerebellar pathology evident. Despite an increased understanding of its neuropathology, disease progression in this disease remains poorly understood. This study aimed to characterise longitudinal change in brain structure using a multi-modal approach across cerebral and cerebellar grey and white matter.

Methods

T1-weighted, diffusion-tensor, and magnetisation transfer magnetic resonance images were obtained from 28 individuals with Friedreich ataxia and 29 age- and gender-matched controls at two time-points, 2 years apart. Region-of-interest and exploratory between-group comparisons assessed changes in brain macrostructure (cerebellar lobule volume, cerebral cortical thickness/gyrification, brain white matter volume) and microstructure (white matter fractional anisotropy, mean/axial/radial diffusivity, magnetisation transfer ratio). Rates of change were correlated against change in neurological severity, Time 1 severity, and onset age.

Results

Individuals with Friedreich ataxia had a greater rate of white matter volume loss than controls in the superior cerebellar peduncles and right peri-thalamic/posterior cerebral regions, and greater reduction in left primary motor cortex gyrification. Greater cerebellar/brainstem white matter volume loss and right dorsal premotor gyrification loss was observed amongst individuals with less severe neurological symptoms at Time 1. Conversely, cerebral atrophy and changes in axial diffusivity were observed in individuals with more severe Time 1 symptoms. Progression in radial diffusivity was more pronounced amongst individuals with earlier disease onset. Greater right ventral premotor gyrification loss correlated with greater neurological progression.

Conclusion

Heterogeneity in Friedreich ataxia progression is observed at the neurobiological level, with evidence of earlier cerebellar and later cerebral degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy and ethical restrictions.

References

  1. Campuzano V, Montermini L, Pianese L et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271(5254):1423–1427

    Article  CAS  PubMed  Google Scholar 

  2. Delatycki MB, Corben LA (2012) Clinical features of Friedreich ataxia. J Child Neurol 27(9):1133–1137

    Article  PubMed  PubMed Central  Google Scholar 

  3. Delatycki MB, Paris DB, Gardner RJ et al (1999) Clinical and genetic study of Friedreich ataxia in an Australian population. Am J Med Genet 87(2):168–174

    Article  CAS  PubMed  Google Scholar 

  4. Subramony SH, May W, Lynch D et al (2005) Measuring Friedreich ataxia: Interrater reliability of a neurologic rating scale. Neurology 64(7):1261–1262

    Article  CAS  PubMed  Google Scholar 

  5. Schmitz-Hubsch T, du Montcel ST, Baliko L et al (2006) Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66(11):1717–1720

    Article  CAS  PubMed  Google Scholar 

  6. Campuzano V, Montermini L, Lutz Y et al (1997) Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 6(11):1771–1780

    Article  CAS  PubMed  Google Scholar 

  7. Patel M, Isaacs CJ, Seyer L et al (2016) Progression of Friedreich ataxia: quantitative characterization over 5 years. Ann Clin Transl Neurol 3(9):684–694

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tai G, Corben LA, Gurrin L et al (2015) A study of up to 12 years of follow-up of Friedreich ataxia utilising four measurement tools. J Neurol Neurosurg Psychiatry 86(6):660–666

    Article  PubMed  Google Scholar 

  9. Friedman LS, Farmer JM, Perlman S et al (2010) Measuring the rate of progression in Friedreich ataxia: implications for clinical trial design. Mov Disord 25(4):426–432

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lecocq C, Charles P, Azulay J-P et al (2016) Delayed-onset Friedreich’s ataxia revisited: the delayed-onset Friedreich’s Ataxia revisited. Mov Disord 31(1):62–69

    Article  PubMed  Google Scholar 

  11. Selvadurai LP, Harding IH, Corben LA, Georgiou-Karistianis N (2018) Cerebral abnormalities in Friedreich ataxia: a review. Neurosci Biobehav Rev 84:394–406

    Article  PubMed  Google Scholar 

  12. Della Nave R, Ginestroni A, Giannelli M et al (2008) Brain structural damage in Friedreich’s ataxia. J Neurol Neurosurg Psychiatry 79(1):82–85

    Article  CAS  PubMed  Google Scholar 

  13. Della Nave R, Ginestroni A, Tessa C et al (2008) Brain white matter tracts degeneration in Friedreich ataxia. An in vivo MRI study using tract-based spatial statistics and voxel-based morphometry. Neuroimage 40(1):19–25

    Article  PubMed  Google Scholar 

  14. França MC, D’Abreu A, Yasuda CL et al (2009) A combined voxel-based morphometry and 1H-MRS study in patients with Friedreich’s ataxia. J Neurol 256(7):1114–1120

    Article  PubMed  Google Scholar 

  15. Lindig T, Bender B, Kumar VJ et al (2019) Pattern of cerebellar atrophy in Friedreich’s ataxia-using the SUIT template. Cerebellum 18(3):435–447

    Article  PubMed  Google Scholar 

  16. Pagani E, Ginestroni A, Della Nave R et al (2010) Assessment of brain white matter fiber bundle atrophy in patients with Friedreich ataxia. Radiology 255(3):882–889

    Article  PubMed  Google Scholar 

  17. Rezende TJR, Silva CB, Yassuda CL et al (2016) Longitudinal magnetic resonance imaging study shows progressive pyramidal and callosal damage in Friedreich’s ataxia: VBM, DTI, and freesurfer analysis in FRDA. Mov Disord 31(1):70–78

    Article  PubMed  Google Scholar 

  18. Selvadurai LP, Harding IH, Corben LA et al (2016) Cerebral and cerebellar grey matter atrophy in Friedreich ataxia: the IMAGE-FRDA study. J Neurol 263(11):2215–2223

    Article  PubMed  Google Scholar 

  19. Akhlaghi H, Corben L, Georgiou-Karistianis N et al (2011) Superior cerebellar peduncle atrophy in Friedreich’s ataxia correlates with disease symptoms. Cerebellum 10(1):81–87

    Article  PubMed  Google Scholar 

  20. Della Nave R, Ginestroni A, Diciotti S et al (2011) Axial diffusivity is increased in the degenerating superior cerebellar peduncles of Friedreich’s ataxia. Neuroradiology 53(5):367–372

    Article  PubMed  Google Scholar 

  21. Dogan I, Tinnemann E, Romanzetti S et al (2016) Cognition in Friedreich’s ataxia: a behavioral and multimodal imaging study. Ann Clin Transl Neurol 3(8):572–587

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rizzo G, Tonon C, Valentino ML et al (2011) Brain diffusion-weighted imaging in Friedreich’s ataxia: DWI in FRDA. Mov Disord 26(4):705–712

    Article  PubMed  Google Scholar 

  23. Corben LA, Kashuk SR, Akhlaghi H et al (2014) Myelin paucity of the superior cerebellar peduncle in individuals with Friedreich ataxia: an MRI magnetization transfer imaging study. J Neurol Sci 343(1–2):138–143

    Article  PubMed  Google Scholar 

  24. Mascalchi M, Toschi N, Giannelli M et al (2016) Regional cerebral disease progression in Friedreich’s Ataxia: a longitudinal diffusion tensor imaging study. J Neuroimaging 26(2):197–200

    Article  PubMed  Google Scholar 

  25. Ward PGD, Harding IH, Close TG et al (2019) Longitudinal evaluation of iron concentration and atrophy in the dentate nuclei in Friedreich ataxia. Mov Disord 34(3):335–343

    Article  CAS  PubMed  Google Scholar 

  26. Harding IH, Corben LA, Storey E et al (2016) Fronto-cerebellar dysfunction and dysconnectivity underlying cognition in Friedreich ataxia: the IMAGE-FRDA study: cognitive networks in Friedreich ataxia. Hum Brain Mapp 37(1):338–350

    Article  PubMed  Google Scholar 

  27. Harding IH, Corben LA, Delatycki MB et al (2017) Cerebral compensation during motor function in Friedreich ataxia: the IMAGE-FRDA study. Mov Disord 32(8):1221–1229

    Article  PubMed  Google Scholar 

  28. Harding IH, Raniga P, Delatycki MB et al (2016) Tissue atrophy and elevated iron concentration in the extrapyramidal motor system in Friedreich ataxia: the IMAGE-FRDA study. J Neurol Neurosurg Psychiatry 87(11):1261–1263

    Article  PubMed  Google Scholar 

  29. Selvadurai LP, Corben LA, Delatycki MB et al (2020) Multiple mechanisms underpin cerebral and cerebellar white matter deficits in Friedreich ataxia: the IMAGE-FRDA study. Hum Brain Mapp 41(7):1920–1933

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shishegar R, Harding IH, Corben LA et al (2020) Longitudinal Increases in cerebral brain activation during working memory performance in Friedreich ataxia: 24-month data from IMAGE-FRDA. Cerebellum 19(2):182–191

    Article  PubMed  Google Scholar 

  31. Romero JE, Coupé P, Giraud R et al (2017) CERES: a new cerebellum lobule segmentation method. Neuroimage 147:916–924

    Article  PubMed  Google Scholar 

  32. Reuter M, Schmansky NJ, Rosas HD, Fischl B (2012) Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61(4):1402–1418

    Article  PubMed  Google Scholar 

  33. Schaer M, Cuadra MB, Tamarit L et al (2008) A surface-based approach to quantify local cortical gyrification. IEEE Trans Med Imaging 27(2):161–170

    Article  PubMed  Google Scholar 

  34. Desikan RS, Ségonne F, Fischl B et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980

    Article  PubMed  Google Scholar 

  35. Keihaninejad S, Zhang H, Ryan NS et al (2013) An unbiased longitudinal analysis framework for tracking white matter changes using diffusion tensor imaging with application to Alzheimer’s disease. Neuroimage 72:153–163

    Article  PubMed  Google Scholar 

  36. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156

    Article  CAS  PubMed  Google Scholar 

  38. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841

    Article  PubMed  Google Scholar 

  39. Mayka MA, Corcos DM, Leurgans SE, Vaillancourt DE (2006) Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. Neuroimage 31(4):1453–1474

    Article  PubMed  Google Scholar 

  40. Vavla M, Arrigoni F, Nordio A et al (2018) Functional and structural brain damage in Friedreich’s ataxia. Front Neurol 9:747

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vieira Karuta SC, Raskin S, de Carvalho NA et al (2015) Diffusion tensor imaging and tract-based spatial statistics analysis in Friedreich’s ataxia patients. Parkinsonism Relat Disord 21(5):504–508

    Article  PubMed  Google Scholar 

  42. Janve VA, Zu Z, Yao S-Y et al (2013) The radial diffusivity and magnetization transfer pool size ratio are sensitive markers for demyelination in a rat model of type III multiple sclerosis (MS) lesions. Neuroimage 74:298–305

    Article  CAS  PubMed  Google Scholar 

  43. Sun S-W, Liang H-F, Trinkaus K et al (2006) Noninvasive detection of cuprizone induced axonal damage and demyelination in the mouse corpus callosum. Magn Reson Med 55(2):302–308

    Article  PubMed  Google Scholar 

  44. Schwartz CG, Reid RI, Gunter JL et al (2014) Improved DTI registration allows voxel-based analysis that outperforms tract-based spatial statistics. Neuroimage 94:65–78

    Article  Google Scholar 

  45. Matsuda Y, Ohi K (2018) Cortical gyrification in schizophrenia: current perspectives. Neuropsychiatr Dis Treat 14:1861–1869

    Article  PubMed  PubMed Central  Google Scholar 

  46. Langer N, Hänggi J, Müller NA et al (2012) Effects of limb immobilization on brain plasticity. Neurology 78(3):182–188

    Article  CAS  PubMed  Google Scholar 

  47. Rezende TJR, Martinez ARM, Faber I et al (2017) Structural signature of classical versus late-onset Friedreich’s ataxia by multimodality brain MRI: neuroimaging findings in cFRDA and LOFA. Hum Brain Mapp 38(8):4157–4168

    Article  PubMed  PubMed Central  Google Scholar 

  48. Blair IA, Farmer J, Hersch S et al (2019) The current state of biomarker research for Friedreich’s ataxia: a report from the 2018 FARA biomarker meeting. Future Sci OA 5(6):FSO398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the individuals with Friedreich ataxia and the control participants who took part in the study, and Monique Stagnitti for participant recruitment and scanning.

Funding

The IMAGE-FRDA study was funded by the Australian National Health and Medical Research Council (Project Grant 1046037).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design were conducted by NG-K, GFE, MBD, and LAC. Data processing and statistical analyses were conducted by LPS, RS, and IHH. Additional data processing was conducted by CS. The first draft of the manuscript was written by LPS and all authors reviewed, critiqued, and edited subsequent versions of the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Nellie Georgiou-Karistianis.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2949 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvadurai, L.P., Georgiou-Karistianis, N., Shishegar, R. et al. Longitudinal structural brain changes in Friedreich ataxia depend on disease severity: the IMAGE-FRDA study. J Neurol 268, 4178–4189 (2021). https://doi.org/10.1007/s00415-021-10512-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10512-x

Keywords

Navigation