Skip to main content
Log in

Adjuvant chemotherapy after severe myelotoxicity during chemoradiation phase in malignant gliomas. Is it feasibile? Results from AINO study (Italian Association for Neuro-Oncology)

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Malignant gliomas (MG) are aggressive brain tumours in adults. The standard of care is concurrent radiation plus temozolomide (TMZ) [chemo-radiotherapy (CRT)] followed by TMZ maintenance up to 6 months. TMZ is considered to have a low toxicity profile, but several studies reported occurrence of severe myelosuppression, especially during the concomitant phase. Toxicity may be prolonged, thus treatment should be discontinued.

Purpose

To evaluate the risk of recurrente myelotoxicity during adjuvant chemotherapy (CT) in patients who recovered from severe myelotoxicity during CRT.

Methods

We retrospectively collected data on patients with MG who developed and recovered from severe myelotoxicity during CRT from eight Italian neuro-oncology centers.

Results

We included 87 patients. Histology was Glioblastoma (GBM) in 78 patients (89.7%); 60% of patients were female. After myelotoxicity recovery, 54 (62%) received treatment. The majority of them (82%, n = 44) received adjuvant TMZ and 18% (n = 10) others treatments. Out of 44 patients who received adjuvant TMZ, 34% experienced the re-occurrence of grade 3–4 myelotoxicity which required permanent CT discontinuation in 6 (13%) cases. Patients who received TMZ or other treatments had longer overall (OS) (adjusted HR 0.46, p = 0.008) and progression free survival (PFS) (adjusted HR 0.57, p = 0.034) than those who remained untreated.

Conclusion

Our study suggests that after severe myelotoxicity the majority of patients received treatment, particularly with TMZ. Only a fraction of patients experienced toxicity recurrence, suggesting that TMZ is well tolerated and had an impact on PFS and OS.   

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author, [V.V.]. The data are not publicly available due to their containing information that could compromise the privacy of research participants.

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  Google Scholar 

  2. Dixit S, Baker L, Walmsley V, Hingorani M (2012) Temozolomide-related idiosyncratic and other uncommon toxicities: a systematic review. Anticancer Drugs 23(10):1099–1106. https://doi.org/10.1097/CAD.0b013e328356f5b0

    Article  CAS  PubMed  Google Scholar 

  3. Gerber DE, Grossman SA, Zeltzman M, Parisi MA, Kleinberg L (2007) The impact of thrombocytopenia from temozolomide and radiation in newly diagnosed adults with high-grade gliomas. Neuro Oncol 9(1):47–52. https://doi.org/10.1215/15228517-2006-024 (Epub 2006 Nov 15)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lombardi G, Caccese M, Bellu L, Pambuku A, Bergo E, Berti F, Gardiman MP, Della Puppa A, Denaro L, Dal Pos S, Zagonel V (2018) Good tolerability of maintenance temozolomide in glioblastoma patients after severe hematological toxicity during concomitant radiotherapy and temozolomide treatment: report of two cases. Anticancer Drugs 29(9):924–928. https://doi.org/10.1097/CAD.0000000000000678 (PMID: 30080691)

    Article  CAS  PubMed  Google Scholar 

  5. Lombardi G, Rumiato E, Bertorelle R, Saggioro D, Farina P, Della Puppa A, Zustovich F, Berti F, Sacchetto V, Marcato R, Amadori A, Zagonel V (2015) Clinical and genetic factors associated with severe hematological toxicity in glioblastoma patients during radiation plus temozolomide treatment: a prospective study. Am J Clin Oncol 38(5):514–519. https://doi.org/10.1097/COC.0b013e3182a790ea

    Article  CAS  PubMed  Google Scholar 

  6. Robins HI, Eickhoff J, Gilbert MR, Armstrong TS, Shi W, De Groot JF, Schultz CJ, Hunter GK, Valeinis E, Roach M, Youssef EF, Souhami L, Howard SP, Lieberman FS, Herman JG, Zhang P, Mehta MP (2019) The association between BMI and BSA-temozolomide-induced myelosuppression toxicities: a correlative analysis of NRG oncology RTOG 0525. Neurooncol Pract. 6(6):473–478. https://doi.org/10.1093/nop/npz006

    Article  PubMed  PubMed Central  Google Scholar 

  7. Arulananda S, Lynam J, Sem Liew M, Wada M, Cher L, Gan HK (2018) Clinical correlates of severe thrombocytopenia from temozolomide in glioblastoma patients. Intern Med J 48(10):1206–1214. https://doi.org/10.1111/imj.14000

    Article  CAS  PubMed  Google Scholar 

  8. Armstrong TS, Cao Y, Scheurer ME et al (2009) Risk analysis of severe myelotoxicity with temozolomide: the effects of clinical and genetic factors. Neurooncology 11:825–832

    CAS  Google Scholar 

  9. Yin AA, He YL, Etcheverry A et al (2019) Novel predictive epigenetic signature for temozolomide in non-G-CIMP glioblastomas. Clin Epigenetic 11(1):76. https://doi.org/10.1186/s13148-019-0670-9

    Article  CAS  Google Scholar 

  10. Altinoz MA, Elmaci I, Bolukbasi FH, Ekmekci CG, Yenmis G, Sari R, Sav A (2017) A MGMT gene variants, temozolomide myelotoxicity and glioma risk. A concise literature survey including an illustrative case. J Chemother 29(4):238–244. https://doi.org/10.1080/1120009X.2017.1312752 (PMID: 28436299)

    Article  CAS  PubMed  Google Scholar 

  11. Becker-Schiebe ME, Wetzel M, Wetzel F, Christansen H, Hoffmann W (2015) Hematologic toxicity of temozolomide and radiation in glioblastoma patients—correlation with clinicopathological factors. Clin Med J1:63–69

    Google Scholar 

  12. Gupta T, Mohanty S, Moiyadi A, Jalali R (2013) Factors predicting temozolomide induced clinically significant acute hematologic toxicity in patients with high-grade gliomas: a clinical audit. Clin Neurol Neurosurg 115(9):1814–1819

    Article  Google Scholar 

  13. Sabharwal A, Waters R, Danson S, Clamp A, Lorigan P, Thatcher N, Margison GP, Middleton MR (2011) Predicting the myelotoxicity of chemotherapy: the use of pretreatment O6-methylguanine-DNA methyltransferase determination in peripheral blood mononuclear cells. Melanoma Res 21(6):502–508. https://doi.org/10.1097/CMR.0b013e32832ccd58

    Article  CAS  PubMed  Google Scholar 

  14. Villano JL, Letarte N, Yu JM, Abdur S, Bressler LR (2012) Hematologic adverse events associated with temozolomide. Cancer Chemother Pharmacol 69(1):107–113

    Article  CAS  Google Scholar 

  15. Tinchon A, Oberndorfer S, Marosi C, Gleiss A, Geroldinger A, Sax C, Sherif C, Moser W, Grisold W (2015) Haematological toxicity of Valproic acid compared to Levetiracetam in patients with glioblastoma multiforme undergoing concomitant radio-chemotherapy: a retrospective cohort study. J Neurol 262(1):179–186. https://doi.org/10.1007/s00415-014-7552-z (PMID: 25359262)

    Article  CAS  PubMed  Google Scholar 

  16. Handoko KB, Souverein PC, van Staa TP et al (2006) Risk of aplastic anemia in patients using antiepileptic drugs. Epilepsia 47:1232–1236

    Article  Google Scholar 

  17. Ronning PA, Helseth E, Meling TR, Johannesen TB (2012) A population-based study on the effect of temozolomide in the treatment of glioblastoma multiforme. Neuro Oncol 14:1178–1184

    Article  Google Scholar 

  18. Trotti A, Colevas AD, Setser A, Rusch V, Jaques D, Budach V, Langer C, Murphy B, Cumberlin R, Coleman CN, Rubin P (2003) CTCAE v30: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol 13(3):176–181

    Article  Google Scholar 

  19. Niewald M, Berdel C, Fleckenstein J, Licht N, Ketter R, Rube C (2011) Toxicity after radiochemotherapy for glioblastoma using temozolomide—a retrospective evaluation. Radiat Oncol 6:141

    Article  CAS  Google Scholar 

  20. Lin AJ, Campian JL, Hui C, Rudra S, Rao YJ, Thotala D, Hallahan D, Huang J (2018) Impact of concurrent versus adjuvant chemotherapy on the severity and duration of lymphopenia in glioma patients treated with radiation therapy. J Neurooncol 136(2):403–411. https://doi.org/10.1007/s11060-017-2668-5 (PMID: 29143923)

    Article  PubMed  Google Scholar 

  21. Williams M, Liu ZW, Woolf D, Hargreaves S, Michalarea V, Menashy R, Kooner I, Wilson E (2012) Change in platelet levels during radiotherapy with concurrent and adjuvant temozolomide for the treatment of glioblastoma: a novel prognostic factor for survival. J Cancer Res Clin Oncol 138(10):1683–1688

    Article  CAS  Google Scholar 

  22. Vaios EJ, Nahed BV, Muzikansky A, Fathi AT, Dietrich J (2016) Bone marrow response as a potential biomarker of outcomes in glioblastoma patients. J Neurosurg 14:1–7. https://doi.org/10.3171/2016.7.JNS16609

    Article  Google Scholar 

  23. Ho KG, Uhlmann EN, Wong ET, Uhlmann EJ (2020) Leukopenia is a biomarker for effective temozolomide dosing and predicts overall survival of patients with glioblastoma Mol. Clin Oncol 13(6):80. https://doi.org/10.3892/mco.2020.2150

    Article  CAS  Google Scholar 

  24. Fontanilles M, Marguet F, Alexandru C, Langlois O, Veresezan O, Gilard V, David M, Laquerriere A, Hanzen C, Tennevet I, Di Fiore F, Clatot F (2019) Early platelet variation during concomitant chemo-radiotherapy predicts adjuvant temozolomide-induced thrombocytopenia in newly diagnosed glioblastoma patients. Support Care Cancer 27(2):477–484. https://doi.org/10.1007/s00520-018-4336-5 (PMID: 29978325)

    Article  PubMed  Google Scholar 

  25. Coffelt SB, Wellenstein MD, de Visser KE (2016) Neutrophils in cancer: neutral no more. Nat Rev Cancer 16(7):431–446. https://doi.org/10.1038/nrc.2016.52

    Article  CAS  PubMed  Google Scholar 

  26. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322

    Article  CAS  Google Scholar 

  27. Bowman RL, Klemm F, Akkari L, Pyonteck SM, Sevenich L, Quail DF, Dhara S, Simpson K, Gardner EE, Iacobuzio-Donahue CA, Brennan CW, Tabar V, Gutin PH, Joyce JA (2016) Macrophage Ontogeny Underlies Differences in Tumor-Specific Education in Brain Malignancies. Cell Rep. 17(9):2445–2459. https://doi.org/10.1016/j.celrep.2016.10.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of study: VV, AP. Acquisition data: AP, AF, GL, RR, PG, SR, LG, CS, EP, GS, GT. Data analysis: LP. Interpretation: AE, VV, AP. Drafting: VV, LP. Revising: AE, AP. Final approval: VV, AP. All authors read and approved submission.

Corresponding author

Correspondence to Veronica Villani.

Ethics declarations

Conflicts of interest

The author declares that they have no conflict of interest.

Consent to participate

Informed consent, in line with the principles of the Declaration of Helsinki, was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villani, V., Anghileri, E., Prosperini, L. et al. Adjuvant chemotherapy after severe myelotoxicity during chemoradiation phase in malignant gliomas. Is it feasibile? Results from AINO study (Italian Association for Neuro-Oncology). J Neurol 268, 2866–2875 (2021). https://doi.org/10.1007/s00415-021-10438-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10438-4

Keywords

Navigation