Skip to main content

Advertisement

Log in

Cardiovascular magnetic resonance imaging and its role in the investigation of stroke: an update

  • Neurological Update
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Recent advances in complementary diagnostic exams have helped to clarify stroke etiology, not only by helping to confirm established stroke causes but also by unveiling new possible stroke mechanisms. Etiological investigation for cardioembolic stroke has benefited in the last years from information provided by studies analysing serum biomarkers, heart rhythm monitoring and imaging methods like cardiovascular magnetic resonance (CMR) imaging. CMR has been particularly important for the characterization of possible new cardioembolic stroke mechanisms including atrial cardiomyopathy, silent myocardial infarction and cardiomyopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams HP Jr, Bendixen BH, Kappelle LJ et al (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial TOAST. Trial of Org 10172 in acute stroke treatment. Stroke 24(1):35–41. https://doi.org/10.1161/01.str.24.1.35

    Article  PubMed  Google Scholar 

  2. Amarenco P, Bogousslavsky J, Caplan LR, Donnan GA, Wolf ME, Hennerici MG (2013) The ASCOD phenotyping of ischemic stroke (Updated ASCO Phenotyping). Cerebrovasc Dis 36:1–5. https://doi.org/10.1159/000352050

    Article  CAS  PubMed  Google Scholar 

  3. Shimizu T, Kashima S, Akiyama H, Isahaya K, Hasegawa Y (2020) The ASCOD phenotyping of embolic strokes of undetermined source. J Stroke Cerebrovasc Dis 29(2):104491. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104491

    Article  PubMed  Google Scholar 

  4. McMahon NE, Bangee M, Benedetto V et al (2020) Etiologic workup in cases of cryptogenic stroke a systematic review of international clinical practice guidelines. Stroke 51:1419–1427. https://doi.org/10.1161/strokeaha.119.027123

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hart RG, Diener HC, Coutts SB et al (2014) Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol 13(4):429–438. https://doi.org/10.1016/S1474-4422(13)70310-7ESUSHartetal,2014

    Article  PubMed  Google Scholar 

  6. Kim SJ, Allen JW, Bouslama M et al (2017) Carotid webs in cryptogenic ischemic strokes: a matched case-control study. J Stroke Cerebrovasc Dis 28(12):104402. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104402

    Article  Google Scholar 

  7. Coutinho JM, Derkatch S, Alphonse RJ, Potvin ARJ et al (2017) Carotid artery web and ischemic stroke: a case-control study. Neurology 88(1):65–69. https://doi.org/10.1212/WNL.0000000000003464

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang AJ, Dhruv P, Choi P et al (2018) A systematic literature review of patients with carotid web and acute ischemic stroke. Stroke 49(12):2872–2876. https://doi.org/10.1161/strokeaha.118.021907

    Article  PubMed  Google Scholar 

  9. Ntaios G, Pearce LA, Veltkamp R et al (2020) Potential embolic sources and outcomes in embolic stroke of undetermined source in the NAVIGATE-ESUS trial. Stroke 51(6):1797–1804. https://doi.org/10.1161/STROKEAHA.119.028669

    Article  PubMed  Google Scholar 

  10. Martinez-Majander RN, Ntaios G, Liu YY et al (2020) Rivaroxaban versus aspirin for secondary prevention of ischaemic stroke in patients with cancer: a subgroup analysis of the NAVIGATE ESUS randomized trial. Eur J Neurol. 27(5):841–848. https://doi.org/10.1111/ene.14172

    Article  CAS  PubMed  Google Scholar 

  11. Ntaios G, Pearce LA, Meseguer E et al (2020) Aortic arch atherosclerosis in patients with embolic stroke of undetermined source: an exploratory analysis of the NAVIGATE ESUS trial. Stroke 50(11):3184–3190. https://doi.org/10.1161/STROKEAHA.119.025813

    Article  Google Scholar 

  12. Ameriso SF, Amarenco P, Pearce LA et al (2020) Intracranial and systemic atherosclerosis in the NAVIGATE ESUS trial: recurrent stroke risk and response to antithrombotic therapy. J Stroke Cerebrovasc Dis 29(8):104936. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104936

    Article  PubMed  Google Scholar 

  13. Uchiyama S, Toyoda K, Kitagawa K et al (2019) Branch atheromatous disease diagnosed as embolic stroke of undetermined source: a sub-analysis of NAVIGATE ESUS. Int J Stroke 14(9):915–922. https://doi.org/10.1177/1747493019852177

    Article  PubMed  Google Scholar 

  14. Kamel H, Pearce LA, Ntaios G et al (2020) Atrial cardiopathy and nonstenosing large artery plaque in patients with embolic stroke of undetermined source. Stroke 51(3):938–943. https://doi.org/10.1161/STROKEAHA.119.028154 (PMID: 31893985)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ntaios G, Perlepe K, Sirimarco G et al (2019) Carotid plaques and detection of atrial fibrillation in embolic stroke of undetermined source. Neurology 92(23):e2644–e2652. https://doi.org/10.1212/WNL.0000000000007611

    Article  PubMed  Google Scholar 

  16. Porambo ME, DeMarco JK (2020) MR imaging of vulnerable carotid plaque. Cardiovasc Diagn Ther. 10(4):1019–1031. https://doi.org/10.21037/cdt.2020.03.12

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mark IT, Nasr DM, Huston J et al (2020) Embolic stroke of undetermined source and carotid intraplaque hemorrhage on MRI: a systemic review and meta-analysis. Clin Neuroradiol. https://doi.org/10.1007/s00062-020-00921-2

    Article  PubMed  Google Scholar 

  18. Ospel JM, Singh N, Marko M et al (2020) Prevalence of ipsilateral nonstenotic carotid plaques on computed tomography angiography in embolic stroke of undetermined source. Stroke 51(6):1743–1749. https://doi.org/10.1161/STROKEAHA.120.029404

    Article  PubMed  Google Scholar 

  19. Siegler JE, Thon JM, Woo JH, Do D, Messé SR, Cucchiara B (2020) Prevalence of nonstenotic carotid plaque in stroke due to atrial fibrillation compared to embolic stroke of undetermined source. J Stroke Cerebrovasc Dis 28(10):104289. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.07.005

    Article  Google Scholar 

  20. Mac Grory B, Emmer BJ, Roosendaal SD, Zagzag D, Yaghi S, Nossek E (2020) Carotid web: an occult mechanism of embolic stroke. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2020-323938

    Article  PubMed  Google Scholar 

  21. Kim SJ, Allen JW, Bouslama M et al (2019) Carotid webs in cryptogenic ischemic strokes: a matched case-control study. J Stroke Cerebrovasc Dis 28(12):104402. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104402

    Article  PubMed  Google Scholar 

  22. Fonseca AC, Ferro JM (2015) Cryptogenic stroke. Eur J Neurol 22:618–623

    Article  CAS  Google Scholar 

  23. Fonseca AC, Brito D, Pinho-e-Melo T, Geraldes R, Canhão P, Caplan LR, Ferro JM (2014) N-terminal pro-brain natriuretic peptide shows diagnostic accuracy for detecting atrial fibrillation in cryptogenic stroke patients. Int J Stroke 9:419–425

    Article  Google Scholar 

  24. Childs H, Ma L, Ma M et al (2011) Comparison of long and short axis quantification of left ventricular volume parameters by cardiovascular magnetic resonance, with ex-vivo validation. J Cardiovasc Magn Reson 13:40

    Article  Google Scholar 

  25. Hundley WG, Bluemke DA, Finn JP et al (2010) ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 55:2614–2662

    Article  Google Scholar 

  26. Messroghli DR, Moon JC, Ferreira VM et al (2017) Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 19:75

    Article  Google Scholar 

  27. Bonnefoy-Cudraz E, Bueno H, Casella G, De Maria E, Fitzsimons D, Halvorsen S, Hassager C, Iakobishvili Z, Magdy A, Marandi T, Mimoso J, Parkhomenko A, Price S, Rokyta R, Roubille F, Serpytis P, Shimony A, Stepinska J, Tint D, Trendafilova E, Tubaro M, Vrints C, Walker D, Zahger D, Zima E, Zukermann R, Lettino M (2018) Editor’s choice—acute cardiovascular care association position paper on intensive cardiovascular care units: an update on their definition, structure, organisation and function. Eur Heart J Acute Cardiovasc Care 7(1):80–95

    Article  Google Scholar 

  28. Romero J, Husain SA, Kelesidis I, Sanz J, Medina HM, Garcia MJ (2016) Detection of left atrial appendage thrombus by cardiac computed tomography in patients with atrial fibrillation: a metaanalysis. Circ Cardiovasc Imaging 6:185–194

    Article  Google Scholar 

  29. Manning WJ, Weintraub RM, Waksmonski CA et al (1995) Accuracy of transesophageal echocardiography for identifying left atrial thrombi. A prospective, intraoperative study. Ann Intern Med 123:817–822

    Article  CAS  Google Scholar 

  30. Groenevel I, Guglielmi V, Leeflang M et al (2020) CT angiography vs echocardiography for detection of cardiac thrombi in ischemic stroke: a systematic review and meta-analysis. J Neurol 267:1793–1801

    Article  Google Scholar 

  31. Babu-Narayan SV, Giannakoulas G, Valente AM, Li W, Gatzoulis MA (2016) Imaging of congenital heart disease in adults. Eur Heart J 37:1182–1195

    Article  Google Scholar 

  32. Miranda B, Fonseca AC, Ferro JM (2018) Patent foramen ovale and stroke. J Neurol 265(8):1943–1949

    Article  Google Scholar 

  33. Silvestry FE, Cohen MS, Armsby LB et al (2015) Guidelines for the echocardiographic assessment of atrial septal defect and patent foramen ovale: from the American Society of Echocardiography and Society for Cardiac Angiography and Interventions. J Am Soc Echocardiogr 28(8):910–958

    Article  Google Scholar 

  34. Mohrs OK, Petersen SE, Erkapic D et al (2005) Diagnosis of patent foramen ovale using contrast-enhanced dynamic MRI: a pilot study. AJR Am J Roentgenol 84:234

    Article  Google Scholar 

  35. Fernandez RS, Diaz CM, Garcia ER, Calvo AM, Pan AR et al (2011) Atrial abnormalities: spectrum on MRI. AJR Am J Roentgenol 197:W635–W642

    Article  Google Scholar 

  36. Weinsaft JW, Kim HW, Shah DJ et al (2008) Detection of left ventricular thrombus by delayed-enhancement cardiovascular magnetic resonance prevalence and markers in patients with systolic dysfunction. J Am Coll Cardiol 52:148–157

    Article  Google Scholar 

  37. Srichai MB, Junor C, Rodriguez LL et al (2006) Clinical, imaging, and pathological characteristics of left ventricular thrombus: a comparison of contrast-enhanced magnetic resonance imaging, transthoracic echocardiography, and transesophageal echocardiography with surgical or pathological validation. Am Heart J 152:75–84

    Article  Google Scholar 

  38. Baher A, Mowla A, Kodali S et al (2014) Cardiac MRI improves identification of etiology of acute ischemic stroke. Cerebrovasc Dis 37:277–284

    Article  Google Scholar 

  39. Velangi PS, Choo C, Chen KA, Kazmirczak F, Nijjar PS, Farzaneh-Far A, Okasha O, Akçakaya M, Weinsaft JW, Shenoy C (2019) Long-term embolic outcomes after detection of left ventricular thrombus by late gadolinium enhancement cardiovascular magnetic resonance imaging: a matched cohort study. Circ Cardiovasc Imaging 12:e009723

    Article  Google Scholar 

  40. ltbach MI, Squire SW, Kudithipudi V, Castellano L, Sorrell VL, (2007) Cardiac MRI is complementary to echocardiography in the assessment of cardiac masses. Echocardiography 24:286–300

    Article  Google Scholar 

  41. Rosário M, Fonseca AC, Sotero FD, Ferro JM (2019) Neurological complications of cardiac tumors. Curr Neurol Neurosci Rep 19:15

    Article  Google Scholar 

  42. Sotero FD, Rosário M, Fonseca AC, Ferro JM (2019) Neurological complications of infective endocarditis. Curr Neurol Neurosci Rep 19:23

    Article  Google Scholar 

  43. Habib G, Lancellotti P, Antunes MJ et al (2015) 2015 ESC guidelines for the management of infective endocarditis. Eur Heart J 36:3075–3128

    Article  Google Scholar 

  44. Dursun M, Yılmaz S, Yılmaz E et al (2015) The utility of cardiac MRI in diagnosis of infective endocarditis: preliminary results. Diagn Interv Radiol 21:28–33

    Article  Google Scholar 

  45. Meissner I, Khandheria BK, Sheps SG et al (2004) Atherosclerosis of the aorta: risk factor, risk marker, or innocent bystander? A prospective population-based transesophageal echocardiography study. J Am Coll Cardiol 44:1018–1024

    Article  Google Scholar 

  46. Faber T, Rippy A, Hyslop WB, Hinderliter A, Sen S (2013) Cardiovascular MRI in detection and measurement of aortic atheroma in stroke/TIA patients. J Neurol Disord 1:139

    PubMed  PubMed Central  Google Scholar 

  47. Corti R, Fuster V (2011) Imaging of atherosclerosis: magnetic resonance imaging. Eur Heart J 32:1709–1719

    Article  Google Scholar 

  48. Kerwin WS, Miller Z, Yuan C (2017) Imaging of the high-risk carotid plaque: magnetic resonance imaging. Semin Vasc Surg 30:54–61

    Article  Google Scholar 

  49. Kottkamp H (2013) Human atrial fibrillation substrate: towards a specific fibrotic atrial cardiomyopathy. Eur Heart J 34:2731–2738

    Article  Google Scholar 

  50. Fonseca AC, Alves P, Inácio N, Marto JP, Viana-Baptista M, Pinho-E-Melo T, Ferro JM, Almeida AG (2018) Patients with undetermined stroke have increased atrial fibrosis: a cardiac magnetic resonance imaging study. Stroke 49(3):734–737

    Article  Google Scholar 

  51. Tandon K, Tirschwell D, Longstreth WT Jr, Smith B, Akoum N (2019) Embolic stroke of undetermined source correlates to atrial fibrosis without atrial fibrillation. Neurology 93(4):e381–e387

    Article  CAS  Google Scholar 

  52. Fonseca AC, Marto JP, Alves PN, Inácio N, Viana-Baptista M, Pinho E, Melo T, Ferro JM, Almeida AG (2018) Women who have ischemic strokes have a higher burden of left atrial fibrosis than men. Stroke 49:2584–2589

    Article  Google Scholar 

  53. Habibi M, Zareian M, Ambale Venkatesh B, Samiei S, Imai M, Wu C, Launer LJ, Shea S, Gottesman RF, Heckbert SR, Bluemke DA, Lima JAC (2019) Left atrial mechanical function and incident ischemic cerebrovascular events independent of AF: insights from the MESA study. JACC Cardiovasc Imaging 12:2417–2427

    Article  Google Scholar 

  54. Merkler AE, Sigurdsson S, Eiriksdottir G et al (2019) Association between unrecognized myocardial infarction and cerebral infarction on magnetic resonance imaging. JAMA Neurol 76:956–961

    Article  Google Scholar 

  55. Fonseca AC, Marto JP, Pimenta D, Guimarães T, Alves PN, Inácio N, Viana-Baptista M, Pinho-E-Melo T, Pinto FJ, Ferro JM, Almeida AG (2020) Undetermined stroke genesis and hidden cardiomyopathies determined by cardiac magnetic resonance. Neurology 94:e107–e113

    Article  Google Scholar 

  56. Hohneck A, Overhoff D, Doesch C, Sandberg R, Rudic B, Tueluemen E, Budjan J, Szabo K, Borggrefe M, Papavassiliu T (2020) Extent of late gadolinium enhancement predicts thromboembolic events in patients with hypertrophic cardiomyopathy. Circ J 84:754–762

    Article  CAS  Google Scholar 

  57. Pöyhönen P, Kuusisto J, Järvinen V, Pirinen J, Räty H, Lehmonen L, Paakkanen R, Martinez-Majander N, Putaala J, Sinisalo J (2020) Left ventricular non-compaction as a potential source for cryptogenic ischemic stroke in the young: a case-control study. PLoS ONE 15(8):e0237228

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Catarina Fonseca.

Ethics declarations

Conflicts of interest

Nothing to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, A.C., Ferro, J.M. & Almeida, A.G. Cardiovascular magnetic resonance imaging and its role in the investigation of stroke: an update. J Neurol 268, 2597–2604 (2021). https://doi.org/10.1007/s00415-020-10393-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-10393-6

Keywords

Navigation