Skip to main content

Estimating the relative contribution of comorbidities in predicting health-related quality of life of people with multiple sclerosis

Abstract

Background

Little is known about the relative contribution of comorbidities in predicting the health-related quality of life (HRQoL) of people with Multiple Sclerosis (PwMS).

Objective

To determine the associations between the number of and individual comorbidities and HRQoL and estimate the relative contribution of different comorbidities on HRQoL.

Methods

Cross-sectional analysis of data on self-reported presence of 30 comorbidities and HRQoL from the Australian MS Longitudinal Study (AMSLS) participants (n = 902). HRQoL was measured using the Assessment of Quality of Life-8 Dimensions (AQoL-8D). Linear regression and general dominance analysis were used.

Results

Higher number of comorbidities was associated with lower HRQoL (p trend p < 0.01). Comorbidities accounted for 18.1% of the variance in HRQoL. Mental health and musculoskeletal disorders were the strongest contributors to lower HRQoL. Of individual comorbidities, systemic lupus erythematosus (SLE) [β = − 0.16 (− 0.27, − 0.05)] and depression [β = − 0.15(− 0.18, − 0.13)] were most strongly associated with overall HRQoL, depression [β = − 0.14(− 0.16, − 0.11)] and anxiety [β = − 0.10 (− 0.13, − 0.07)] with psychosocial HRQoL, and SLE [β = − 0.18 (− 0.29, − 0.07)], rheumatoid arthritis [β = − 0.11 (− 0.19, − 0.02)] and hyperthyroidism [β = − 0.11 (− 0.19, − 0.03)) with physical HRQoL.

Conclusion

Comorbidities potentially make important contributions to HRQoL in PwMS. Our findings highlight groups of and individual comorbidities that could provide the largest benefits for the HRQoL of PwMS if they were targeted for prevention, early detection, and optimal treatment.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    World Health Organization (1997) WHOQOL: measuring quality of life. https://www.who.int/healthinfo/survey/whoqol-qualityoflife/en/. Accessed 12 June 2018

  2. 2.

    MS International Federation What influences quality of life with MS and how can we improve it? MS International Federation. https://www.msif.org/living-with-ms/what-influences-quality-of-life/. Accessed 27 June 2018

  3. 3.

    Nortvedt MW, Riise T, Myhr KM, Nyland HI (1999) Quality of life in multiple sclerosis: Measuring the disease effects more broadly. Neurology 53(5):1098–1103

    CAS  Article  Google Scholar 

  4. 4.

    Warren SA, Turpin KVL, Pohar SL, Jones CA, Warren KG (2009) Comorbidity and health-related quality of life in people with multiple sclerosis. Int J MS Care 11(1):6–16

    Article  Google Scholar 

  5. 5.

    Janzen W, Turpin KVL, Warren SA, Marrie RA, Warren KG (2013) Change in the health-related quality of life of multiple sclerosis patients over 5 years. Int J MS Care 15(1):46–53

    Article  Google Scholar 

  6. 6.

    Ahmad H, Taylor BV, Ivd M, Colman S, O'Leary BA, Breslin M, Palmer AJ (2017) The impact of multiple sclerosis severity on health state utility values: evidence from Australia. Mult Scler J 23(8):1157–1166

    Article  Google Scholar 

  7. 7.

    Marrie RA, Horwitz R, Cutter G, Tyry T (2012) Cumulative impact of comorbidity on quality of life in MS. Acta Neurol Scand 125(3):180–186. https://doi.org/10.1111/j.1600-0404.2011.01526.x

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Hermann BP, Vickrey B, Hays RD, Cramer J, Devinsky O, Meador K, Perrine K, Myers LW, Ellison GW (1996) A comparison of health-related quality of life in patients with epilepsy, diabetes and multiple sclerosis. Epilepsy Res 25(2):113–118

    CAS  Article  Google Scholar 

  9. 9.

    Berrigan LI, Fisk JD, Patten SB, Tremlett H, Wolfson C, Warren S, Fiest KM, McKay KA, Marrie RA, For the CIHR Team in the Epidemiology Impact of Comorbidity on Multiple Sclerosis (ECoMS) (2016) Health-related quality of life in multiple sclerosis: Direct and indirect effects of comorbidity. Neurology 86(15):1417–1424. https://doi.org/10.1212/WNL.0000000000002564

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Turpin KVL, Carroll LJ, Cassidy JD, Hader WJ (2007) Deterioration in the health-related quality of life of persons with multiple sclerosis: the possible warning signs. Mult Scler J 13(8):1038–1045

    CAS  Article  Google Scholar 

  11. 11.

    Weiland TJ, De Livera AM, Brown CR, Jelinek GA, Aitken Z, Simpson SL, Neate SL, Taylor KL, O'Kearney E, Bevens W, Marck CH (2018) Health outcomes and lifestyle in a sample of people with multiple sclerosis (HOLISM): longitudinal and validation cohorts. Front Neuro. https://doi.org/10.3389/fneur.2018.01074

    Article  Google Scholar 

  12. 12.

    Taylor BV, Palmer A, Simpson S Jr, Lucas R, Group NS, Simmons RD, Mason D, Pearson J, Clarke G, Sabel C, Willoughby E, Richardson A, Abernethy D (2013) Assessing possible selection bias in a national voluntary MS longitudinal study in Australia. Mult Scler J 19(12):1627–1631. https://doi.org/10.1177/1352458513481511

    Article  Google Scholar 

  13. 13.

    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O'Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302. https://doi.org/10.1002/ana.22366

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    McDonald WI, Compston A, Edan G, Goodkin D, Hartung H-P, Lublin FD, McFarland HF, Paty DW, Polman CH, Reingold SC, Sandberg-Wollheim M, Sibley W, Thompson A, Svd N, Weinshenker BY, Wolinsky JS (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50(1):121–127. https://doi.org/10.1002/ana.1032

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Marrie RA, Cohen J, Stuve O, Trojano M, Sorensen PS, Reingold S, Cutter G, Reider N (2015) A systematic review of the incidence and prevalence of comorbidity in multiple sclerosis: overview. Mult Scler J 21(3):263–281. https://doi.org/10.1177/1352458514564491

    Article  Google Scholar 

  16. 16.

    Kang JH, Chen YH, Lin HC (2010) Comorbidities amongst patients with multiple sclerosis: a population-based controlled study. Eur J Neurol 17(9):1215–1219. https://doi.org/10.1111/j.1468-1331.2010.02971.x

    Article  PubMed  Google Scholar 

  17. 17.

    Marrie R, Horwitz R, Cutter G, Tyry T, Campagnolo D, Vollmer T (2008) Comorbidity, socioeconomic status and multiple sclerosis. Mult Scler 14:1091–1098. https://doi.org/10.1177/1352458508092263

    Article  PubMed  Google Scholar 

  18. 18.

    Richardson J, Sinha K, Iezzi A, Khan MA (2014) Modelling utility weights for the Assessment of Quality of Life (AQoL)-8D. Qual Life Res 23(8):2395–2404

    Article  Google Scholar 

  19. 19.

    Campbell JA, Hensher M, Neil A, Venn A, Otahal P, Wilkinson S, Palmer AJ (2018) An exploratory study: a head-to-head comparison of the EQ-5D-5L and AQoL-8D for long-term publicly waitlisted bariatric surgery patients before and 3 months after bariatric surgery. Pharmacoecon Open 2(4):443–458

    Article  Google Scholar 

  20. 20.

    Richardson J, Iezzi A, Khan MA, Maxwell A (2014) Validity and reliability of the assessment of quality of life (AQoL)-8D multi-attribute utility instrument. Patient 7(1):85–96

    Article  Google Scholar 

  21. 21.

    Luchman JN (2013) DOMIN: Stata module to conduct dominance analysis. https://ideas.repec.org/c/boc/bocode/s457629.html. Accessed 16 Apr 2018

  22. 22.

    Nathans LL, Oswald FL, Nimon K (2012) Interpreting multiple linear regression: a guidebook of variable importance. Pract Assess Rese Eval 17(9):1–19

    Google Scholar 

  23. 23.

    Azen R, Budescu D (2003) The dominance analysis approach for comparing predictors in multiple regression. Psychol Methods 8:129–148

    Article  Google Scholar 

  24. 24.

    Azen R, Traxel N (2009) Using dominance analysis to determine predictor importance in logistic regression. J Educ Behav Stat 34:319–347

    Article  Google Scholar 

  25. 25.

    Greenland S (1989) Modeling and variable selection in epidemiologic analysis. Am J Public Health 79(3):340–349

    CAS  Article  Google Scholar 

  26. 26.

    Kamangar F (2012) Confounding variables in epidemiologic studies: basics and beyond. Arch Iran Med 15:508–516

    PubMed  Google Scholar 

  27. 27.

    Maxwell A, Özmen M, Iezzi A, Richardson J (2016) Deriving population norms for the AQoL-6D and AQoL-8D multi-attribute utility instruments from web-based data. Qual Life Res 25(12):3209–3219

    Article  Google Scholar 

  28. 28.

    Lo LMP, Taylor BV, Winzenberg T, Palmer A, Blizzard L, van der Mei I (2020) Comorbidities contribute substantially to the severity of common multiple sclerosis symptoms. J Neurol (Accepted)

  29. 29.

    Marrie RA (2018) Comorbidities in multiple sclerosis: a clinical resource guide. The Consortium of Multiple Sclerosis Centers (CMSC); Nurse Practitioner Alternatives (NPA); Catamount Medical Education. https://mscomorbidities.com/. Accessed 30 Mar 2018

  30. 30.

    Marrie RA, Patten SB, Tremlett H, Wolfson C, Warren S, Svenson LW, Jette N, Fisk J, Epidemiology CTit, Impact of Comorbidity on Multiple S, (2016) Sex differences in comorbidity at diagnosis of multiple sclerosis: A population-based study. Neurology 86(14):1279–1286. https://doi.org/10.1212/WNL.0000000000002481

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Marrie RA, Horwitz R, Cutter G, Tyry T, Campagnolo D, Vollmer T (2009) The burden of mental comorbidity in multiple sclerosis: frequent, underdiagnosed, and undertreated. Mult Scler J 15(3):385–392

    CAS  Article  Google Scholar 

  32. 32.

    Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81(9):646–656

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Aitken D, Jones G, Winzenberg T (2019) Clinical overview of osteoarthritis (OA) and the challenges faced for future management. In. doi: 10.1016/B978–0–12–801238–3.11419–9

  34. 34.

    Degenhardt A, Ramagopalan SV, Scalfari A, Ebers GC (2009) Clinical prognostic factors in multiple sclerosis: a natural history review. Nat Rev Neurol 5(12):672–682

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deepest gratitude for all the participants of the Australian Multiple Sclerosis Longitudinal Study for their continuous support and enthusiasm to respond to all surveys.

Funding

This study was supported by Multiple Sclerosis Research Australia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ingrid van der Mei.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1122 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lo, L.M.P., Taylor, B.V., Winzenberg, T. et al. Estimating the relative contribution of comorbidities in predicting health-related quality of life of people with multiple sclerosis. J Neurol 268, 569–581 (2021). https://doi.org/10.1007/s00415-020-10195-w

Download citation

Keywords

  • Comorbidity
  • Quality of life
  • Multiple sclerosis
  • General dominance analysis
  • Relative contribution
  • AQoL-8D