Skip to main content


Log in

Cognitive dysfunction and brain atrophy in Susac syndrome

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript



Susac syndrome is a very rare cerebral small vessel disease, which can leave patients with cognitive impairment. We aimed at evaluating processing speed slowing, executive dysfunction and apathy and their relationships with whole brain and callosal atrophy.


Patients with Susac syndrome included in a prospective observational cohort study were evaluated, while clinically steady-state, with standardized brain MRI and a neuropsychological battery specifically designed to capture minimal cognitive alterations in non-disabled young patients. Brain volume and corpus callosum area were measured using 3D-T1 sequences, repeatedly overtime. Relationships between neuropsychological data and brain volumetric measures obtained the same day were tested with linear regression while controlling for sex, age, level of education, scores of depression and of apathy.


Nineteen patients aged 37.5 ± 10.5 years were included. Mean follow-up time was 2.6 ± 1.3 years (5.8 ± 2.2 evaluations). While Montreal Cognitive Assessment scores were 25.1 ± 3.6, processing speed slowing was obvious (Trail Making Test version A: 43.1 ± 16.2 s; version B: 95.5 ± 67.9 s; reaction time: 314.6 ± 79.6 ms). Brain and corpus callosum atrophy was striking. No relationship was found between cognitive performances and brain volume or corpus callosum area.


Patients with Susac syndrome show largely preserved global cognitive functions but important processing speed alterations. Although brain and corpus callosum area atrophy is prominent and evolving, we did not find any relationship with cognitive alterations, questioning the mechanisms underlying cognitive alterations in these patients.

Trial registration

Clinical Trial Registration-URL: Unique Identifier: NCT01481662

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others


  1. Papo T, Biousse V, Lehoang P, Fardeau C, N'Guyen N, Huong DL et al (1998) Susac syndrome. Medicine (Baltimore) 77(1):3–11

    Article  CAS  Google Scholar 

  2. Papo T, Klein I, Sacre K, Doan S, Bodaghi B, Aubart-Cohen F (2012) Susac syndrome. Rev Med Intern 33(2):94–98

    Article  CAS  Google Scholar 

  3. Dorr J, Krautwald S, Wildemann B, Jarius S, Ringelstein M, Duning T et al (2013) Characteristics of Susac syndrome: a review of all reported cases. Nat Rev Neurol 9(6):307–316

    Article  Google Scholar 

  4. Aubart-Cohen F, Klein I, Alexandra JF, Bodaghi B, Doan S, Fardeau C et al (2007) Long-term outcome in Susac syndrome. Medicine (Baltimore) 86(2):93–102

    Article  CAS  Google Scholar 

  5. London F, Pothalil D, Duprez TP, Sindic CJ (2016) Potential benefits of early aggressive immunotherapy in Susac syndrome. Acta Neurol Belg 116(4):451–460

    Article  CAS  Google Scholar 

  6. LeMonda BC, Peck CP, Giles KJ, Bowers D (2015) Neurocognitive profile of a woman with Susac's syndrome: further evidence of cognitive variability. Clin Neuropsychol 29(5):689–706

    Article  Google Scholar 

  7. Grzegorski T, Losy J (2017) Cognitive impairment in multiple sclerosis—a review of current knowledge and recent research. Rev Neurosci 28(8):845–860

    Article  Google Scholar 

  8. Dichgans M (2009) Cognition in CADASIL. Stroke 40(3 Suppl):S45–S47

    Article  Google Scholar 

  9. Susac JO, Murtagh FR, Egan RA, Berger JR, Bakshi R, Lincoff N et al (2003) MRI findings in Susac's syndrome. Neurology 61(12):1783–1787

    Article  CAS  Google Scholar 

  10. Rennebohm R, Susac JO, Egan RA, Daroff RB (2010) Susac's syndrome—update. J Neurol Sci 299(1–2):86–91

    Article  Google Scholar 

  11. Wuerfel J, Sinnecker T, Ringelstein EB, Jarius S, Schwindt W, Niendorf T et al (2012) Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Mult Scler 18(11):1592–1599

    Article  Google Scholar 

  12. Fein G, Di Sclafani V, Tanabe J, Cardenas V, Weiner MW, Jagust WJ et al (2000) Hippocampal and cortical atrophy predict dementia in subcortical ischemic vascular disease. Neurology 55(11):1626–1635

    Article  CAS  Google Scholar 

  13. Peters N, Holtmannspötter M, Opherk C, Gschwendtner A, Herzog J, Sämann P et al (2006) Brain volume changes in CADASIL: a serial MRI study in pure subcortical ischemic vascular disease. Neurology 66(10):1517–1522

    Article  CAS  Google Scholar 

  14. Damjanovic D, Valsasina P, Rocca MA, Stromillo ML, Gallo A, Enzinger C et al (2017) Hippocampal and deep gray matter nuclei atrophy is relevant for explaining cognitive impairment in MS: a multicenter study. AJNR Am J Neuroradiol 38(1):18–24

    Article  CAS  Google Scholar 

  15. Jack CR Jr, Petersen RC, Xu Y, O'Brien PC, Smith GE, Ivnik RJ et al (2000) Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 55(4):484–489

    Article  Google Scholar 

  16. Kleffner I, Dorr J, Ringelstein M, Gross CC, Bockenfeld Y, Schwindt W et al (2016) Diagnostic criteria for Susac syndrome. J Neurol Neurosurg Psychiatry 87(12):1287–1295

    Article  Google Scholar 

  17. Jouvent E, Reyes S, De Guio F, Chabriat H (2015) Reaction time is a marker of early cognitive and behavioral alterations in pure cerebral small vessel disease. J Alzheimers Dis 47(2):413–419

    Article  CAS  Google Scholar 

  18. Larouche E, Tremblay MP, Potvin O, Laforest S, Bergeron D, Laforce R et al (2016) Normative data for the montreal cognitive assessment in middle-aged and elderly Quebec-French people. Arch Clin Neuropsychol 31:819–826

    Article  Google Scholar 

  19. Grober E, Merling A, Heimlich T, Lipton RB (1997) Free and cued selective reminding and selective reminding in the elderly. J Clin Exp Neuropsychol 19(5):643–654

    Article  CAS  Google Scholar 

  20. Kent PL (2017) Evolution of Wechsler's Memory Scales: content and structural analysis. Appl Neuropsychol Adult 24(3):232–251

    Article  Google Scholar 

  21. Corruble E, Purper D, Payan C, Guelfi J (1998) Inter-rater reliability of two depression rating scales, MADRS and DRRS, based on videotape records of structured interviews. Eur Psychiatry 13(5):264–266

    Article  CAS  Google Scholar 

  22. Starkstein SE, Mayberg HS, Preziosi TJ, Andrezejewski P, Leiguarda R, Robinson RG (1992) Reliability, validity, and clinical correlates of apathy in Parkinson's disease. J Neuropsychiatry Clin Neurosci 4(2):134–139

    Article  CAS  Google Scholar 

  23. Tombaugh TN (2004) Trail Making Test A and B: normative data stratified by age and education. Arch Clin Neuropsychol 19(2):203–214

    Article  Google Scholar 

  24. Royall DR, Cordes JA, Polk M (1998) CLOX: an executive clock drawing task. J Neurol Neurosurg Psychiatry 64(5):588–594

    Article  CAS  Google Scholar 

  25. Cardebat D, Doyon B, Puel M, Goulet P, Joanette Y (1990) Formal and semantic lexical evocation in normal subjects. Performance and dynamics of production as a function of sex, age and educational level. Acta Neurol Belg 90(4):207–217

    CAS  PubMed  Google Scholar 

  26. Zimmermann P, Fimm B (2009) Test for attentional performance (TAP) 2.2 version: Psytest edition.

  27. De Guio F, Duering M, Fazekas F, De Leeuw FE, Greenberg SM, Pantoni L et al (2019) Brain atrophy in cerebral small vessel diseases: extent, consequences, technical limitations and perspectives: the HARNESS initiative. J Cereb Blood Flow Metab.

    Article  PubMed  Google Scholar 

  28. Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A et al (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17(1):479–489

    Article  Google Scholar 

  29. Smith EE, Biessels GJ, De Guio F, de Leeuw FE, Duchesne S, During M et al (2019) Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration. Alzheimers Dement (Amst) 11:191–204

    Google Scholar 

  30. Whitwell JL, Crum WR, Watt HC, Fox NC (2001) Normalization of cerebral volumes by use of intracranial volume: implications for longitudinal quantitative MR imaging. AJNR Am J Neuroradiol 22(8):1483–1489

    CAS  PubMed  Google Scholar 

  31. Herron TJ, Kang X, Woods DL (2012) Automated measurement of the human corpus callosum using MRI. Front Neuroinform 6:25

    Article  Google Scholar 

  32. Delorme S, De Guio F, Reyes S, Jabouley A, Chabriat H, Jouvent E (2017) Reaction time is negatively associated with corpus callosum area in the early stages of CADASIL. AJNR Am J Neuroradiol 38:2094–2099

    Article  CAS  Google Scholar 

  33. Feil D, Razani J, Boone K, Lesser I (2003) Apathy and cognitive performance in older adults with depression. Int J Geriatr Psychiatry 18(6):479–485

    Article  Google Scholar 

  34. Liu RS, Lemieux L, Bell GS, Sisodiya SM, Shorvon SD, Sander JW et al (2003) A longitudinal study of brain morphometrics using quantitative magnetic resonance imaging and difference image analysis. Neuroimage 20(1):22–33

    Article  CAS  Google Scholar 

  35. De Stefano N, Stromillo ML, Giorgio A, Bartolozzi ML, Battaglini M, Baldini M et al (2016) Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J Neurol Neurosurg Psychiatry 87(1):93–99

    PubMed  Google Scholar 

  36. Granberg T, Martola J, Bergendal G, Shams S, Damangir S, Aspelin P et al (2015) Corpus callosum atrophy is strongly associated with cognitive impairment in multiple sclerosis: results of a 17-year longitudinal study. Mult Scler 21(9):1151–1158

    Article  Google Scholar 

  37. De Guio F, Reyes S, Duering M, Pirpamer L, Chabriat H, Jouvent E (2014) Decreased T1 contrast between gray matter and normal-appearing white matter in CADASIL. Am J Neuroradiol 35(1):72–76

    Article  Google Scholar 

  38. De Guio F, Jouvent E, Biessels GJ, Black SE, Brayne C, Chen C et al (2016) Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. J Cereb Blood Flow Metab 36:1319–1337

    Article  Google Scholar 

  39. Gunda B, Porcher R, Duering M, Guichard JP, Mawet J, Jouvent E et al (2014) ADC histograms from routine DWI for longitudinal studies in cerebral small vessel disease: a field study in CADASIL. PLoS One 9(5):e97173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuang S (2017) Is reaction time an index of white matter connectivity during training? Cogn Neurosci 8(2):126–128

    Article  Google Scholar 

  41. Siettos CI, Smyrnis N (2017) Reaction time as a stochastic process implemented by functional brain networks. Cogn Neurosci 8(2):133–135

    Article  Google Scholar 

  42. Rossetti HC, Lacritz LH, Cullum CM, Weiner MF (2011) Normative data for the montreal cognitive assessment (MoCA) in a population-based sample. Neurology 77(13):1272–1275

    Article  Google Scholar 

  43. Snaith RP, Harrop FM, Newby DA, Teale C (1986) Grade scores of the Montgomery-Asberg Depression and the Clinical Anxiety Scales. Br J Psychiatry 148:599–601

    Article  CAS  Google Scholar 

Download references


Stéphanie Machado analyzed the data and drafted the manuscript. Eric Jouvent conceptualized the study, analyzed the data and revised the manuscript. Isabelle Klein designed the study. François De Guio analyzed the data. Carla Machado played a major role in the acquisition of data. Fleur Cohen Aubart designed the study. Karim Sacré designed the study. Thomas Papo designed the study and revised the manuscript


This work was supported by a PHRC grand from the French Ministry of Research (PHRC, CarESS Study).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Thomas Papo.

Ethics declarations

Conflicts of interest

None of the authors have any competing interests.

Ethical standards

All patients gave their written consent to participate to the study, which was approved by an independent ethics committee. The study has been registered on (Identifier: NCT01481662, 2009).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPG 239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, S., Jouvent, E., Klein, I. et al. Cognitive dysfunction and brain atrophy in Susac syndrome. J Neurol 267, 994–1003 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: