Advertisement

Journal of Neurology

, Volume 266, Issue 6, pp 1303–1309 | Cite as

Aphasia outcome: the interactions between initial severity, lesion size and location

  • Sarah Benghanem
  • Charlotte Rosso
  • Céline Arbizu
  • Eric Moulton
  • Didier Dormont
  • Anne Leger
  • Christine Pires
  • Yves SamsonEmail author
Original Communication

Abstract

Objectives

The outcome of aphasia at 3 months is variable in patients with moderate/severe stroke. The aim was to predict 3-month aphasia outcome using prediction models including initial severity in addition to the interaction between lesion size and location at the acute phase.

Methods

Patients with post-stroke aphasia (assessed by the Aphasia Rapid Test at day 7-ART D7) and MRI performed at day 1 were enrolled (n = 73). Good outcome at 3-months was defined by an Aphasia Handicap Score of 0–2. Each infarct lesion was overlapped with an area of interest in the left temporo-parietal region to compute an intersection index (proportion of the critical region damaged by the infarct). We tested ART D7, age, lesion volume, and intersection index as well as a combined variable lesion volume*intersection in a univariate analysis. Then, we performed a multivariate analysis to investigate which variables were independent predictors of good outcome.

Results

ART at D7, infarct volume, and the intersection index were univariate predictors of good outcome. In the multivariate analysis, ART D7 and “volume ≥ 50 ml or intersection index ≥ 20%” correctly classified 89% of the patients (p < 0.0001). When added to the model, the interaction between both variables was significant indicating that the impact of the size or site variable depends on the initial severity of aphasia.

Conclusion

In patients with initially severe aphasia, large infarct size or critical damage in left temporoparietal junction is associated with poor language outcome at 3 months.

Keywords

Aphasia Magnetic resonance imaging Prognosis 

Notes

Acknowledgements

The Pitié-Salpêtrière registry was supported by the French Ministry of Health grant EVALUSINV PHRC AOM 03 008. The research leading to these results has received funding from “Investissements d’avenir” ANR-10-IAIHU-06.

Funding

No grant was provided for this analysis and this study.

Compliance with ethical standards

Conflicts of interest

The authors have none.

Patient consent and ethics

The Pitié-Salpêtrière registry has approval by an ethics committee (Paris VI ethic committee). However and in accordance with French legislation, written informed consent from patients was waived, as it is a retrospective database implying only analysis of anonymized data collected prospectively as part of routine clinical care.

Supplementary material

415_2019_9259_MOESM1_ESM.docx (90 kb)
Supplementary material 1 (DOCX 90 KB)

References

  1. 1.
    Kertesz A, McCabe P (1977) Recovery patterns and prognosis in aphasia. Brain 100(Pt 1):1–18CrossRefGoogle Scholar
  2. 2.
    Wade DT, Hewer RL, David RM, Enderby PM (1986) Aphasia after stroke: natural history and associated deficits. J Neurol Neurosurg Psychiatry 49:11–16CrossRefGoogle Scholar
  3. 3.
    Pedersen PM, Vinter K, Olsen TS (2004) Aphasia after stroke: type, severity and prognosis. The Copenhagen aphasia study. Cerebrovasc Dis 17:35–43.  https://doi.org/10.1159/000073896 CrossRefGoogle Scholar
  4. 4.
    Pedersen PM, Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS (1995) Aphasia in acute stroke: incidence, determinants, and recovery. Ann Neurol 38:659–666CrossRefGoogle Scholar
  5. 5.
    Laska AC, Hellblom A, Murray V et al (2001) Aphasia in acute stroke and relation to outcome. J Intern Med 249:413–422CrossRefGoogle Scholar
  6. 6.
    Lazar RM, Speizer AE, Festa JR et al (2008) Variability in language recovery after first-time stroke. J Neurol Neurosurg Psychiatry 79:530–534.  https://doi.org/10.1136/jnnp.2007.122457 CrossRefGoogle Scholar
  7. 7.
    Lazar RM, Minzer B, Antoniello D et al (2010) Improvement in aphasia scores after stroke is well predicted by initial severity. Stroke 41:1485–1488.  https://doi.org/10.1161/STROKEAHA.109.577338 CrossRefGoogle Scholar
  8. 8.
    Azuar C, Leger A, Arbizu C et al (2013) The Aphasia Rapid Test: an NIHSS-like aphasia test. J Neurol 260:2110–2117.  https://doi.org/10.1007/s00415-013-6943-x CrossRefGoogle Scholar
  9. 9.
    El Hachioui H, Lingsma HF, Van de Sandt-Koenderman MW et al (2013) Long-term prognosis of aphasia after stroke. J Neurol Neurosurg Psychiatry 84:310–315.  https://doi.org/10.1136/jnnp-2012-302596 CrossRefGoogle Scholar
  10. 10.
    Plowman E, Hentz B, Ellis C Jr (2012) Post-stroke aphasia prognosis: a review of patient-related and stroke-related factors. J Eval Clin Pract 18:689–694.  https://doi.org/10.1111/j.1365-2753.2011.01650.x CrossRefGoogle Scholar
  11. 11.
    Watila MM, Balarabe SA (2015) Factors predicting post-stroke aphasia recovery. J Neurol Sci 352:12–18.  https://doi.org/10.1016/j.jns.2015.03.020 CrossRefGoogle Scholar
  12. 12.
    Krakauer JW, Marshall RS (2015) The proportional recovery rule revisited. Ann Neurol 78:845–847.  https://doi.org/10.1002/ana.24537 CrossRefGoogle Scholar
  13. 13.
    Marchi NA, Ptak R, Di Pietro M, Schnider A, Guggisberg AG (2017) Principles of proportional recovery after stroke generalize to neglect and aphasia. Eur J Neurol 24:1084–1087.  https://doi.org/10.1111/ene.13296 CrossRefGoogle Scholar
  14. 14.
    Hope TMH, Friston K, Price CJ, Leff AP, Rotshtein P, Bowman H (2019) Recovery after stroke: not so proportional after all? Brain 142:15–22.  https://doi.org/10.1093/brain/awy302 CrossRefGoogle Scholar
  15. 15.
    Hawe RL, Scott SH, Dukelow SP (2019) Taking proportional out of stroke recovery. Stroke 50:204–211.  https://doi.org/10.1161/STROKEAHA.118.023006 CrossRefGoogle Scholar
  16. 16.
    Samson Y, Belin P, Zilbovicius M et al (1999) Mechanisms of aphasia recovery and brain imaging. Rev Neurol (Paris) 155:725–730Google Scholar
  17. 17.
    Marchina S, Zhu LL, Norton A et al (2011) Impairment of speech production predicted by lesion load of the left arcuate fasciculus. Stroke 42:2251–2256.  https://doi.org/10.1161/STROKEAHA.110.606103 CrossRefGoogle Scholar
  18. 18.
    Rosso C, Vargas P, Valabregue R et al (2015) Aphasia severity in chronic stroke patients: a combined disconnection in the dorsal and ventral language pathways. Neurorehabilit Neural Repair 29:287–295.  https://doi.org/10.1177/1545968314543926 CrossRefGoogle Scholar
  19. 19.
    Hillis AE, Beh YY, Sebastian R et al (2018) Predicting recovery in acute poststroke aphasia. Ann Neurol 83:612–622.  https://doi.org/10.1002/ana.25184 CrossRefGoogle Scholar
  20. 20.
    Ivanova MV, Isaev DY, Dragoy OV et al (2016) Diffusion-tensor imaging of major white matter tracts and their role in language processing in aphasia. Cortex 85:165–181.  https://doi.org/10.1016/j.cortex.2016.04.019 CrossRefGoogle Scholar
  21. 21.
    Hope TMH, Leff AP, Price CJ (2018) Predicting language outcomes after stroke: is structural disconnection a useful predictor? Neuroimage Clin 19:22–29.  https://doi.org/10.1016/j.nicl.2018.03.037 CrossRefGoogle Scholar
  22. 22.
    Hope TMH, Seghier M, Leff AP, Price CJ (2013) Predicting outcome and recovery after stroke with lesions extracted from MRI images. Neuroimage Clin 2:424–433CrossRefGoogle Scholar
  23. 23.
    Ramsey LE, Siegel JS, Lang CE et al (2017) Behavioural clusters and predictors of performance during recovery from stroke. Nat Hum Behav 1:0038.  https://doi.org/10.1038/s41562-016-0038 CrossRefGoogle Scholar
  24. 24.
    Tabuas-Pereira M, Freitas S, Beato-Coelho J et al (2018) Aphasia rapid test: translation, adaptation and validation studies for the Potuguese population. Acta Med Port 31:265–271.  https://doi.org/10.20344/amp.9090 CrossRefGoogle Scholar
  25. 25.
    Flamand-Roze C, Falissard B, Roze E et al (2011) Validation of a new language screening tool for patients with acute stroke: the language screening test (LAST). Stroke 42:1224–1229.  https://doi.org/10.1161/STROKEAHA.110.609503 CrossRefGoogle Scholar
  26. 26.
    Jayakumar H, Samivel B, Janarthanam M et al (2018) Aphasia rapid test—quantification and assessment of aphasia in stroke (P3.320). Neurology 90(15 supplement). http://n.neurology.org/content/90/15_Supplement/P3.230 (Abstract)
  27. 27.
    Goodglass H, Kaplan E (1983) The assessment of aphasia and related disorders, second edition 1983 ed. Lea & Febiger 600 South Washington Square, PhiladelphiaGoogle Scholar
  28. 28.
    Laska AC, Bartfai A, hellblom A, Murray V, Kahan T (2007) Clinical and prognostic properties of standardized and functional aphasia assessments. J Rehabil Med 39:387–392CrossRefGoogle Scholar
  29. 29.
    Weimar C, König IR, Kraywinkel K, Ziegler A, Diener HC (2004) Age and National Institute of Health Stroke Scale Score within 6 hours after onset are accurate predictors of outcome after cerebral ischemia: development and external validation of prognostic models. Stroke 35:158–162CrossRefGoogle Scholar
  30. 30.
    Park CH, Kou N, Boudrias MH, Playford ED, Ward NS (2013) Assessing a standardised approach to measuring corticospinal integrity after stroke with DTI. Neuroimage Clin 2:521–533.  https://doi.org/10.1016/j.nicl.2013.04.002 CrossRefGoogle Scholar
  31. 31.
    Rosso C, Colliot O, Valabregue R et al (2011) Tissue at risk in the deep middle cerebral artery territory is critical to stroke outcome. Neuroradiology 53:763–771.  https://doi.org/10.1007/s00234-011-0916-5 CrossRefGoogle Scholar
  32. 32.
    El Hachioui H, Visch-Brink EG, de Lau LM et al (2017) Screening tests for aphasia in patients with stroke: a systematic review. J Neurol 264:211–220.  https://doi.org/10.1007/s00415-016-8170-8 CrossRefGoogle Scholar
  33. 33.
    Glize B, Villain M, Richert L et al (2017) Language features in the acute phase of poststroke severe aphasia could predict the outcome. Eur J Phys Rehabil Med 53:249–255.  https://doi.org/10.23736/S1973-9087.16.04255-6 Google Scholar
  34. 34.
    Knopman DS, Selnes OA, Niccum N, Rubens AB (1984) Recovery of naming in aphasia: relationship to fluency, comprehension and CT findings. Neurology 34:1461–1470CrossRefGoogle Scholar
  35. 35.
    Saur D, Ronneberger O, Kummerer D et al (2010) Early functional magnetic resonance imaging activations predict language outcome after stroke. Brain 133:1252–1264.  https://doi.org/10.1093/brain/awq021 CrossRefGoogle Scholar
  36. 36.
    Lyden P (2017) Using the National Institutes of Health Stroke Scale: a cautionary tale. Stroke 48:513–519.  https://doi.org/10.1161/STROKEAHA.116.015434 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sarah Benghanem
    • 1
  • Charlotte Rosso
    • 1
    • 2
  • Céline Arbizu
    • 1
    • 3
  • Eric Moulton
    • 2
  • Didier Dormont
    • 2
    • 4
  • Anne Leger
    • 1
  • Christine Pires
    • 1
  • Yves Samson
    • 1
    • 2
    Email author
  1. 1.APHP-Urgences Cérébro-Vasculaires, Hôpital Pitié-SalpêtrièreParisFrance
  2. 2.Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICMParisFrance
  3. 3.IM2A, Hôpital Pitié-SalpêtrièreParisFrance
  4. 4.APHP-Neuroradiology DepartmentHôpital Pitié-SalpêtrièreParisFrance

Personalised recommendations