Journal of Neurology

, Volume 266, Issue 5, pp 1236–1249 | Cite as

Postural control during galvanic vestibular stimulation in patients with persistent perceptual–postural dizziness

  • Josephin Woll
  • Andreas Sprenger
  • Christoph HelmchenEmail author
Original Communication


Over the past years galvanic vestibular stimulation (GVS) has been increasingly applied to stimulate the vestibular system in health and disease, but not in patients with persistent postural–perceptual dizziness (PPPD) yet. We functionally tested motion perception thresholds and postural responses to imperceptible noisy (nGVS) and perceptible bimastoidal GVS intensities in patients with PPPD with normal vestibulo-ocular reflexes. We hypothesized that GVS destabilizes PPPD patients under simple postural conditions stronger compared to healthy controls. They were compared to healthy subjects under several conditions each with the eyes open and closed: baseline with firm platform support, standing on foam and cognitive demand (count backward). Low and high GVS intensities (range 0.8–2.8 mA) were applied according to the individual thresholds and compared with no GVS. PPPD patients showed a reduced perception threshold to GVS compared to healthy control subjects. Median postural sway speed increased with stimulus intensity and on eye closure, but there was no group difference, irrespective of the experimental condition. Romberg’s ratio was consistently lower during nGVS than in all other conditions. Group-related dissociable effects were found with the eyes closed in (i) the baseline condition in which high GVS elicited higher postural sway of PPPD patients and (ii) in the foam condition, with better postural stability of PPPD patients during perceptible GVS. Group and condition differences of postural control were neither related to anxiety nor depression scores. GVS may be helpful to identify thresholds of vestibular perception and to modulate vestibulo-spinal reflexes in PPPD, with dissociable effects with respect to perceptible and imperceptible stimuli. The sway increase in the baseline of PPPD may be related to an earlier transition from open- to closed-loop mode of postural control. In contrast, the smaller sway of PPPD in the foam condition under visual deprivation is in line with the known balance improvement under more demanding postural challenges in PPPD. It is associated with a prolonged transition from open- to closed-loop postural feedback control. It could also reflect a shift of intersensory weighting with a smaller dependence on proprioceptive feedback control in PPPD patients under complex tasks. In summary, GVS discloses differences between simple and complex balance tasks in PPPD.


Persistent perceptual–postural dizziness Postural control Galvanic vestibular stimulation 



We like to thank all participants in our study for their patience and compliance. Furthermore, we are grateful for helpful discussions on SDA analyses to Janis Sprenger (M.Sc. Informatics, German Research Center for Artificial Intelligence, Saarbrücken, Germany).

Compliance with ethical standards

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

The study has been approved by the University Ethics Committee and has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.


  1. 1.
    Rosengren SM, Colebatch JG (2018) The contributions of vestibular evoked myogenic potentials and acoustic vestibular stimulation to our understanding of the vestibular system. Front Neurol 9:481CrossRefGoogle Scholar
  2. 2.
    Fitzpatrick RC, Day BL (2004) Probing the human vestibular system with galvanic stimulation. J Appl Physiol (1985) 96:2301–2316CrossRefGoogle Scholar
  3. 3.
    Tax CM, Bom AP, Taylor RL, Todd N, Cho KK, Fitzpatrick RC, Welgampola MS (2013) The galvanic whole-body sway response in health and disease. Clin Neurophysiol 124:2036–2045CrossRefGoogle Scholar
  4. 4.
    Wardman DL, Fitzpatrick RC (2002) What does galvanic vestibular stimulation stimulate? Adv Exp Med Biol 508:119–128CrossRefGoogle Scholar
  5. 5.
    Rinalduzzi S, Cipriani AM, Capozza M, Accornero N (2011) Postural responses to low-intensity, short-duration, galvanic vestibular stimulation as a possible differential diagnostic procedure. Acta Neurol Scand 123:111–116CrossRefGoogle Scholar
  6. 6.
    Gensberger KD, Kaufmann AK, Dietrich H, Branoner F, Banchi R, Chagnaud BP, Straka H (2016) Galvanic vestibular stimulation: cellular substrates and response patterns of neurons in the vestibulo-ocular network. J Neurosci 36:9097–9110CrossRefGoogle Scholar
  7. 7.
    Stephan T, Deutschlander A, Nolte A, Schneider E, Wiesmann M, Brandt T, Dieterich M (2005) Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies. Neuroimage 26:721–732CrossRefGoogle Scholar
  8. 8.
    Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 85:886–899CrossRefGoogle Scholar
  9. 9.
    Cyran CA, Boegle R, Stephan T, Dieterich M, Glasauer S (2016) Age-related decline in functional connectivity of the vestibular cortical network. Brain Struct Funct 221:1443–1463CrossRefGoogle Scholar
  10. 10.
    Lobel E, Kleine JF, Bihan DL, Leroy-Willig A, Berthoz A (1998) Functional MRI of galvanic vestibular stimulation. J Neurophysiol 80:2699–2709CrossRefGoogle Scholar
  11. 11.
    Fitzpatrick RC, Marsden J, Lord SR, Day BL (2002) Galvanic vestibular stimulation evokes sensations of body rotation. Neuroreport 13:2379–2383CrossRefGoogle Scholar
  12. 12.
    Volkening K, Bergmann J, Keller I, Wuehr M, Muller F, Jahn K (2014) Verticality perception during and after galvanic vestibular stimulation. Neurosci Lett 581:75–79CrossRefGoogle Scholar
  13. 13.
    Fitzpatrick RC, Wardman DL, Taylor JL (1999) Effects of galvanic vestibular stimulation during human walking. J Physiol 517(Pt 3):931–939CrossRefGoogle Scholar
  14. 14.
    Ertl M, Klimek M, Boegle R, Stephan T, Dieterich M, Vestibular perception thresholds tested by galvanic vestibular stimulation. J Neurol (2018)Google Scholar
  15. 15.
    Moss F, Ward LM, Sannita WG (2004) Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol 115:267–281CrossRefGoogle Scholar
  16. 16.
    Collins JJ, Chow CC, Imhoff TT (1995) Stochastic resonance without tuning. Nature 376:236–238CrossRefGoogle Scholar
  17. 17.
    Wuehr M, Boerner JC, Pradhan C, Decker J, Jahn K, Brandt T, Schniepp R (2018) Stochastic resonance in the human vestibular system—noise-induced facilitation of vestibulospinal reflexes. Brain Stimul 11:261–263CrossRefGoogle Scholar
  18. 18.
    Goel R, Kofman I, Jeevarajan J, De Dios Y, Cohen HS, Bloomberg JJ, Mulavara AP (2015) Using low levels of stochastic vestibular stimulation to improve balance function. PLoS One 10:e0136335CrossRefGoogle Scholar
  19. 19.
    MacDougall HG, Moore ST, Curthoys IS, Black FO (2006) Modeling postural instability with galvanic vestibular stimulation. Exp Brain Res 172:208–220CrossRefGoogle Scholar
  20. 20.
    Mulavara AP, Fiedler MJ, Kofman IS, Wood SJ, Serrador JM, Peters B, Cohen HS, Reschke MF, Bloomberg JJ (2011) Improving balance function using vestibular stochastic resonance: optimizing stimulus characteristics. Exp Brain Res 210:303–312CrossRefGoogle Scholar
  21. 21.
    Iwasaki S, Yamamoto Y, Togo F, Kinoshita M, Yoshifuji Y, Fujimoto C, Yamasoba T (2014) Noisy vestibular stimulation improves body balance in bilateral vestibulopathy. Neurology 82:969–975CrossRefGoogle Scholar
  22. 22.
    Wuehr M, Nusser E, Krafczyk S, Straube A, Brandt T, Jahn K, Schniepp R (2016) Noise-enhanced vestibular input improves dynamic walking stability in healthy subjects. Brain Stimul 9:109–116CrossRefGoogle Scholar
  23. 23.
    Fujimoto C, Yamamoto Y, Kamogashira T, Kinoshita M, Egami N, Uemura Y, Togo F, Yamasoba T, Iwasaki S (2016) Noisy galvanic vestibular stimulation induces a sustained improvement in body balance in elderly adults. Sci Rep 6:37575CrossRefGoogle Scholar
  24. 24.
    Pal S, Rosengren SM, Colebatch JG (2009) Stochastic galvanic vestibular stimulation produces a small reduction in sway in Parkinson’s disease. J Vestib Res 19:137–142Google Scholar
  25. 25.
    Samoudi G, Jivegard M, Mulavara AP, Bergquist F (2015) Effects of stochastic vestibular galvanic stimulation and LDOPA on balance and motor symptoms in patients with Parkinson’s disease. Brain Stimul 8:474–480CrossRefGoogle Scholar
  26. 26.
    Cai J, Lee S, Ba F, Garg S, Kim LJ, Liu A, Kim D, Wang ZJ, McKeown MJ (2018) Galvanic vestibular stimulation (GVS) augments deficient pedunculopontine nucleus (PPN) connectivity in mild Parkinson’s disease: fMRI effects of different stimuli. Front Neurosci 12:101CrossRefGoogle Scholar
  27. 27.
    Fujimoto C, Egami N, Kinoshita M, Sugasawa K, Yamasoba T, Iwasaki S (2014) Postural stability in vestibular neuritis: age, disease duration, and residual vestibular function. Laryngoscope 124:974–979CrossRefGoogle Scholar
  28. 28.
    Staab JP, Eckhardt-Henn A, Horii A, Jacob R, Strupp M, Brandt T, Bronstein A (2017) Diagnostic criteria for persistent postural-perceptual dizziness (PPPD): Consensus document of the committee for the classification of vestibular disorders of the Barany Society. J Vestib Res 27:191–208CrossRefGoogle Scholar
  29. 29.
    Popkirov S, Staab JP, Stone J (2018) Persistent postural–perceptual dizziness (PPPD): a common, characteristic and treatable cause of chronic dizziness. Pract Neurol 18:5–13CrossRefGoogle Scholar
  30. 30.
    Brandt T (1996) Phobic postural vertigo. Neurology 46:1515–1519CrossRefGoogle Scholar
  31. 31.
    Brauer SG, Woollacott M, Shumway-Cook A (2002) The influence of a concurrent cognitive task on the compensatory stepping response to a perturbation in balance-impaired and healthy elders. Gait Posture 15:83–93CrossRefGoogle Scholar
  32. 32.
    Seemungal BM, Passamonti L (2018) Persistent postural–perceptual dizziness: a useful new syndrome. Pract Neurol 18:3–4CrossRefGoogle Scholar
  33. 33.
    Querner V, Krafczyk S, Dieterich M, Brandt T (2000) Patients with somatoform phobic postural vertigo: the more difficult the balance task, the better the balance performance. Neurosci Lett 285:21–24CrossRefGoogle Scholar
  34. 34.
    Wuehr M, Brandt T, Schniepp R (2017) Distracting attention in phobic postural vertigo normalizes leg muscle activity and balance. Neurology 88:284–288CrossRefGoogle Scholar
  35. 35.
    Tjernstrom F, Fransson PA, Holmberg J, Karlberg M, Magnusson M (2009) Decreased postural adaptation in patients with phobic postural vertigo—an effect of an “anxious” control of posture? Neurosci Lett 454:198–202CrossRefGoogle Scholar
  36. 36.
    Carpenter MG, Frank JS, Silcher CP, Peysar GW (2001) The influence of postural threat on the control of upright stance. Exp Brain Res 138:210–218CrossRefGoogle Scholar
  37. 37.
    Querner V, Krafczyk S, Dieterich M, Brandt T (2002) Phobic postural vertigo. Body sway during visually induced roll vection. Exp Brain Res 143:269–275CrossRefGoogle Scholar
  38. 38.
    Indovina I, Riccelli R, Chiarella G, Petrolo C, Augimeri A, Giofre L, Lacquaniti F, Staab JP, Passamonti L (2015) Role of the insula and vestibular system in patients with chronic subjective dizziness: an fMRI study using sound-evoked vestibular stimulation. Front Behav Neurosci 9:334CrossRefGoogle Scholar
  39. 39.
    Lee JO, Lee ES, Kim JS, Lee YB, Jeong Y, Choi BS, Kim JH, Staab JP (2018) Altered brain function in persistent postural perceptual dizziness: a study on resting state functional connectivity. Hum Brain Mapp 39:3340–3353CrossRefGoogle Scholar
  40. 40.
    Riccelli R, Passamonti L, Toschi N, Nigro S, Chiarella G, Petrolo C, Lacquaniti F, Staab JP, Indovina I (2017) Altered insular and occipital responses to simulated vertical self-motion in patients with persistent postural–perceptual dizziness. Front Neurol 8:529CrossRefGoogle Scholar
  41. 41.
    Cousins S, Cutfield NJ, Kaski D, Palla A, Seemungal BM, Golding JF, Staab JP, Bronstein AM (2014) Visual dependency and dizziness after vestibular neuritis. PLoS One 9:e105426CrossRefGoogle Scholar
  42. 42.
    Cousins S, Kaski D, Cutfield N, Arshad Q, Ahmad H, Gresty MA, Seemungal BM, Golding J, Bronstein AM (2017) Predictors of clinical recovery from vestibular neuritis: a prospective study. Ann Clin Transl Neurol 4:340–346CrossRefGoogle Scholar
  43. 43.
    Roberts RE, Ahmad H, Patel M, Dima D, Ibitoye R, Sharif M, Leech R, Arshad Q, Bronstein AM (2018) An fMRI study of visuo-vestibular interactions following vestibular neuritis. Neuroimage Clin 20:1010–1017CrossRefGoogle Scholar
  44. 44.
    Collins JJ, De Luca CJ (1993) Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp Brain Res 95:308–318CrossRefGoogle Scholar
  45. 45.
    Wuehr M, Pradhan C, Novozhilov S, Krafczyk S, Brandt T, Jahn K, Schniepp R (2013) Inadequate interaction between open- and closed-loop postural control in phobic postural vertigo. J Neurol 260:1314–1323CrossRefGoogle Scholar
  46. 46.
    Gottlich M, Jandl NM, Sprenger A, Wojak JF, Munte TF, Kramer UM, Helmchen C (2016) Hippocampal gray matter volume in bilateral vestibular failure. Hum Brain Mapp 37:1998–2006CrossRefGoogle Scholar
  47. 47.
    Helmchen C, Knauss J, Trillenberg P, Frendl A, Sprenger A (2017) Role of the patient’s history of vestibular symptoms in the clinical evaluation of the bedside head-impulse test. Front Neurol 8:51CrossRefGoogle Scholar
  48. 48.
    Sprenger A, Wojak JF, Jandl NM, Hertel S, Helmchen C (2014) Predictive mechanisms improve the vestibulo-ocular reflex in patients with bilateral vestibular failure. J Neurol 261:628–631CrossRefGoogle Scholar
  49. 49.
    Machner B, Sprenger A, Fullgraf H, Trillenberg P, Helmchen C (2013) [Video-based head impulse test. Importance for routine diagnostics of patients with vertigo]. Nervenarzt 84:975–983CrossRefGoogle Scholar
  50. 50.
    Dieterich M, Brandt T (1993) Ocular torsion and tilt of subjective visual vertical are sensitive brainstem signs. Ann Neurol 33:292–299CrossRefGoogle Scholar
  51. 51.
    Sprenger A, Steinhaus S, Helmchen C (2017) Postural control during recall of vestibular sensation in patients with functional dizziness and unilateral vestibulopathy. J Neurol 264:42–44CrossRefGoogle Scholar
  52. 52.
    Sprenger A, Wojak JF, Jandl NM, Helmchen C (2017) Postural control in bilateral vestibular failure: its relation to visual, proprioceptive, vestibular, and cognitive input. Front Neurol 8:444CrossRefGoogle Scholar
  53. 53.
    Krafczyk S, Tietze S, Swoboda W, Valkovic P, Brandt T (2006) Artificial neural network: a new diagnostic posturographic tool for disorders of stance. Clin Neurophysiol 117:1692–1698CrossRefGoogle Scholar
  54. 54.
    Tjernstrom F, Bjorklund M, Malmstrom EM (2015) Romberg ratio in quiet stance posturography—test to retest reliability. Gait Posture 42:27–31CrossRefGoogle Scholar
  55. 55.
    Sprenger A, Steinhaus S, Helmchen C (2017) Postural control during recall of vestibular sensation in patients with functional dizziness and unilateral vestibulopathy. J Neurol 264(Suppl 1):42–44CrossRefGoogle Scholar
  56. 56.
    Donker SF, Roerdink M, Greven AJ, Beek PJ (2007) Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control. Exp Brain Res 181:1–11CrossRefGoogle Scholar
  57. 57.
    Helmchen C, Kirchhoff J-B, Göttlich M, Sprenger A (2017) Postural ataxia in cerebellar downbeat nystagmus: its relation to visual, proprioceptive and vestibular signals and cerebellar atrophy. PLoS ONE 12(1):e0168808CrossRefGoogle Scholar
  58. 58.
    Raymakers JA, Samson MM, Verhaar HJ (2005) The assessment of body sway and the choice of the stability parameter(s). Gait Posture 21:48–58CrossRefGoogle Scholar
  59. 59.
    Ghofrani M, Olyaei G, Talebian S, Bagheri H, Malmir K (2017) Test-retest reliability of linear and nonlinear measures of postural stability during visual deprivation in healthy subjects. J Phys Ther Sci 29:1766–1771CrossRefGoogle Scholar
  60. 60.
    Amoud H, Abadi M, Hewson DJ, Michel-Pellegrino V, Doussot M, Duchene J (2007) Fractal time series analysis of postural stability in elderly and control subjects. J Neuroeng Rehabil 4:12CrossRefGoogle Scholar
  61. 61.
    Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191CrossRefGoogle Scholar
  62. 62.
    Fujimoto C, Murofushi T, Chihara Y, Ushio M, Suzuki M, Yamaguchi T, Yamasoba T, Iwasaki S (2013) Effect of severity of vestibular dysfunction on postural instability in idiopathic bilateral vestibulopathy. Acta Otolaryngol 133:454–461CrossRefGoogle Scholar
  63. 63.
    Paloski WH, Black FO, Metter EJ (2004) Postflight balance control recovery in an elderly astronaut: a case report. Otol Neurotol 25:53–56CrossRefGoogle Scholar
  64. 64.
    Collins JJ, De Luca CJ (1995) The effects of visual input on open-loop and closed-loop postural control mechanisms. Exp Brain Res 103:151–163CrossRefGoogle Scholar
  65. 65.
    Schniepp R, Wuehr M, Pradhan C, Novozhilov S, Krafczyk S, Brandt T, Jahn K (2013) Nonlinear variability of body sway in patients with phobic postural vertigo. Front Neurol 4:115CrossRefGoogle Scholar
  66. 66.
    Holmberg J, Tjernstrom F, Karlberg M, Fransson PA, Magnusson M (2009) Reduced postural differences between phobic postural vertigo patients and healthy subjects during a postural threat. J Neurol 256:1258–1262CrossRefGoogle Scholar
  67. 67.
    Holmberg J, Karlberg M, Fransson PA, Magnusson M (2003) Phobic postural vertigo: body sway during vibratory proprioceptive stimulation. Neuroreport 14:1007–1011CrossRefGoogle Scholar
  68. 68.
    Lim SB, Cleworth TW, Horslen BC, Blouin JS, Inglis JT, Carpenter MG (2017) Postural threat influences vestibular-evoked muscular responses. J Neurophysiol 117:604–611CrossRefGoogle Scholar
  69. 69.
    Black FO, Pesznecker S, Stallings V (2004) Permanent gentamicin vestibulotoxicity. Otol Neurotol 25:559–569CrossRefGoogle Scholar
  70. 70.
    Aw ST, Todd MJ, Aw GE, Weber KP, Halmagyi GM (2008) Gentamicin vestibulotoxicity impairs human electrically evoked vestibulo-ocular reflex. Neurology 71:1776–1782CrossRefGoogle Scholar
  71. 71.
    Kim J-J, Lee AR, Won Y (2011) Analysis on effects of galvanic vestibular stimulation on postural stability using 3D motion analysis. Appl Math Comput Eng 11:201–2016Google Scholar
  72. 72.
    Inukai Y, Otsuru N, Masaki M, Saito K, Miyaguchi S, Kojima S, Onishi H (2018) Effect of noisy galvanic vestibular stimulation on center of pressure sway of static standing posture. Brain Stimul 11:85–93CrossRefGoogle Scholar
  73. 73.
    Wuehr M, Decker J, Schniepp R (2017) Noisy galvanic vestibular stimulation: an emerging treatment option for bilateral vestibulopathy. J Neurol 264:81–86CrossRefGoogle Scholar
  74. 74.
    Schniepp R, Boerner JC, Decker J, Jahn K, Brandt T, Wuehr M (2018) Noisy vestibular stimulation improves vestibulospinal function in patients with bilateral vestibulopathy. J Neurol. 265(Suppl 1):57–62CrossRefGoogle Scholar
  75. 75.
    Pan W, Soma R, Kwak S, Yamamoto Y (2008) Improvement of motor functions by noisy vestibular stimulation in central neurodegenerative disorders. J Neurol 255:1657–1661CrossRefGoogle Scholar
  76. 76.
    Wuehr M, Nusser E, Decker J, Krafczyk S, Straube A, Brandt T, Jahn K, Schniepp R (2016) Noisy vestibular stimulation improves dynamic walking stability in bilateral vestibulopathy. Neurology 86:2196–2202CrossRefGoogle Scholar
  77. 77.
    Asslander L, Peterka RJ (2014) Sensory reweighting dynamics in human postural control. J Neurophysiol 111:1852–1864CrossRefGoogle Scholar
  78. 78.
    Peterka RJ, Loughlin PJ (2004) Dynamic regulation of sensorimotor integration in human postural control. J Neurophysiol 91:410–423CrossRefGoogle Scholar
  79. 79.
    Black FO, Shupert CL, Peterka RJ, Nashner LM (1989) Effects of unilateral loss of vestibular function on the vestibulo-ocular reflex and postural control. Ann Otol Rhinol Laryngol 98:884–889CrossRefGoogle Scholar
  80. 80.
    Dilda V, Morris TR, Yungher DA, MacDougall HG, Moore ST (2014) Central adaptation to repeated galvanic vestibular stimulation: implications for pre-flight astronaut training. PLoS One 9:e112131CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Josephin Woll
    • 1
  • Andreas Sprenger
    • 1
    • 2
  • Christoph Helmchen
    • 2
    Email author
  1. 1.Institute of Psychology IIUniversity of LuebeckLübeckGermany
  2. 2.Department of NeurologyUniversity Medical Center Schleswig-HolsteinLübeckGermany

Personalised recommendations