Skip to main content

Advertisement

Log in

MRI detects peripheral nerve and adjacent muscle pathology in non-systemic vasculitic neuropathy (NSVN)

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Diagnosis and disease monitoring of non-systemic vasculitic neuropathy (NSVN) are based on electrophysiological and clinical measures. However, these methods are insensitive to detect subtle differences of axonal injury. We here assessed the utility of a multiparametric MRI protocol to quantify axonal injury and neurogenic muscle damage in NSVN.

Methods

Ten NSVN patients and ten age-matched controls were investigated in this single-center prospective study. All participants were assessed by diffusion tensor imaging (DTI) of the tibial nerve and multiecho Dixon MRI of soleus and gastrocnemius muscles. These data were correlated with clinical and electrophysiological data.

Results

DTI scans of the tibial nerves of patients with NSVN showed significantly lower mean fractional anisotropy (FA) values (0.32 ± 0.02) compared to healthy controls (0.42 ± 0.01). FA values of NSVN patients correlated negatively with clinical measures of pain. Multiecho Dixon MRI scans revealed significantly higher intramuscular fat fractions in the soleus muscle (19.86 ± 6.18% vs. 5.86 ± 0.74%, p = 0.0015) and gastrocnemius muscle (26.09 ± 6.21% vs. 3.59 ± 0.82%, p = 0.0002) in NSVN patients compared to healthy controls.

Conclusion

Our data provide a proof of concept that MRI can render information about nerve integrity and muscle pathology in NSVN. Further studies are warranted to evaluate DTI and multiecho Dixon MRI as surrogate markers in NSVN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Collins MP, Dyck PJB, Gronseth GS et al (2010) Peripheral Nerve Society Guideline* on the classification, diagnosis, investigation, and immunosuppressive therapy of non-systemic vasculitic neuropathy: executive summary. J Peripher Nerv Syst 15:176–184. https://doi.org/10.1111/j.1529-8027.2010.00281.x

    Article  PubMed  Google Scholar 

  2. Schneider C, Wunderlich G, Bleistein J et al (2017) Lymphocyte antigens targetable by monoclonal antibodies in non-systemic vasculitic neuropathy. J Neurol Neurosurg Psychiatry 88:756–760. https://doi.org/10.1136/jnnp-2017-315878

    Article  PubMed  Google Scholar 

  3. Üçeyler N, Geng A, Reiners K et al (2015) Non-systemic vasculitic neuropathy: single-center follow-up of 60 patients. J Neurol 262:2092–2100. https://doi.org/10.1007/s00415-015-7813-5

    Article  PubMed  Google Scholar 

  4. Chhabra A, Thakkar RS, Andreisek G et al (2013) Anatomic MR imaging and functional diffusion tensor imaging of peripheral nerve tumors and tumorlike conditions. AJNR Am J Neuroradiol 34:802–807. https://doi.org/10.3174/ajnr.A3316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ishikawa T, Asakura K, Mizutani Y et al (2017) MR neurography for the evaluation of CIDP. Muscle Nerve 55:483–489. https://doi.org/10.1002/mus.25368

    Article  PubMed  Google Scholar 

  6. Lichtenstein T, Sprenger A, Weiss K et al (2018) MRI biomarkers of proximal nerve injury in CIDP. Ann Clin Transl Neurol 5:19–28. https://doi.org/10.1002/acn3.502

    Article  CAS  PubMed  Google Scholar 

  7. Bäumer P, Pham M, Ruetters M et al (2014) Peripheral neuropathy: detection with diffusion-tensor imaging. Radiology 273:185–193. https://doi.org/10.1148/radiol.14132837

    Article  PubMed  Google Scholar 

  8. Guggenberger R, Markovic D, Eppenberger P et al (2012) Assessment of median nerve with MR neurography by using diffusion-tensor imaging: normative and pathologic diffusion values. Radiology 265:194–203. https://doi.org/10.1148/radiol.12111403

    Article  PubMed  Google Scholar 

  9. Idilman IS, Aniktar H, Idilman R et al (2013) Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology 267:767–775. https://doi.org/10.1148/radiol.13121360

    Article  PubMed  Google Scholar 

  10. Tang A, Tan J, Sun M et al (2013) Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 267:422–431. https://doi.org/10.1148/radiol.12120896

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mankodi A, Bishop CA, Auh S et al (2016) Quantifying disease activity in fatty-infiltrated skeletal muscle by IDEAL-CPMG in Duchenne muscular dystrophy. Neuromuscul Disord NMD 26:650–658. https://doi.org/10.1016/j.nmd.2016.07.013

    Article  PubMed  Google Scholar 

  12. Fischer D, Hafner P, Rubino D et al (2016) The 6-minute walk test, motor function measure and quantitative thigh muscle MRI in Becker muscular dystrophy: a cross-sectional study. Neuromuscul Disord NMD 26:414–422. https://doi.org/10.1016/j.nmd.2016.04.009

    Article  PubMed  Google Scholar 

  13. Lehmann HC, Zhang J, Mori S et al (2010) Diffusion tensor imaging to assess axonal regeneration in peripheral nerves. Exp Neurol 223:238–244. https://doi.org/10.1016/j.expneurol.2009.10.012

    Article  PubMed  Google Scholar 

  14. Morisaki S, Kawai Y, Umeda M et al (2011) In vivo assessment of peripheral nerve regeneration by diffusion tensor imaging. J Magn Reson Imaging JMRI 33:535–542. https://doi.org/10.1002/jmri.22442

    Article  PubMed  Google Scholar 

  15. Takagi T, Nakamura M, Yamada M et al (2009) Visualization of peripheral nerve degeneration and regeneration: monitoring with diffusion tensor tractography. NeuroImage 44:884–892. https://doi.org/10.1016/j.neuroimage.2008.09.022

    Article  PubMed  Google Scholar 

  16. Collins MP, Periquet MI (2008) Isolated vasculitis of the peripheral nervous system. Clin Exp Rheumatol 26:S118–S130

    CAS  PubMed  Google Scholar 

  17. Kakuda T, Fukuda H, Tanitame K et al (2011) Diffusion tensor imaging of peripheral nerve in patients with chronic inflammatory demyelinating polyradiculoneuropathy: a feasibility study. Neuroradiology 53:955–960. https://doi.org/10.1007/s00234-010-0833-z

    Article  PubMed  Google Scholar 

  18. Collins MP, Mendell JR, Periquet MI et al (2000) Superficial peroneal nerve/peroneus brevis muscle biopsy in vasculitic neuropathy. Neurology 55:636. https://doi.org/10.1212/WNL.55.5.636

    Article  CAS  PubMed  Google Scholar 

  19. Gwathmey KG, Burns TM, Collins MP et al (2014) Vasculitic neuropathies. Lancet Neurol 13:67–82. https://doi.org/10.1016/S1474-4422(13)70236-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jan Borggrefe for support in statistical analysis of interrater agreement and Claudia Müller for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

CS: study concept, conducting the study, data interpretation, drafting the manuscript. AS: study concept, conducting the study, analysis of data, drafting the manuscript. KW: study concept, technical assistance. KS: analysis of data. DM: study concept, drafting the manuscript for content. GRF: study concept, drafting the manuscript for content. TH: study concept. HCL: study concept, drafting the manuscript for content. TL: study concept, data analysis, drafting the manuscript.

Corresponding author

Correspondence to Helmar C. Lehmann.

Ethics declarations

Conflicts of interest

KW is an employee of Philips Healthcare Germany since 10/2014. He reports personal fees from Philips Healthcare Germany, during the conduct of the study and personal fees from Philips Healthcare Germany, outside the submitted work. The other authors state that there is no conflict of interest.

Ethical standards

All procedures involving human participants were in accordance with the ethical standards of the institutional research committee and the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

Informed consent was obtained from all the individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, C., Sprenger, A., Weiss, K. et al. MRI detects peripheral nerve and adjacent muscle pathology in non-systemic vasculitic neuropathy (NSVN). J Neurol 266, 975–981 (2019). https://doi.org/10.1007/s00415-019-09224-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-019-09224-0

Keywords

Navigation