Skip to main content

Advertisement

Log in

ANO10 mutational screening in recessive ataxia: genetic findings and refinement of the clinical phenotype

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Autosomal recessive cerebellar ataxia type 3 (ARCA3) is a rare inherited disorder caused by mutations in the ANO10 gene. The disease is characterized by slowly progressive spastic ataxia variably associated with motor neuron involvement, epilepsy, and cognitive decline. We performed mutational screening in 80 patients with sporadic or autosomal recessive adult-onset ataxia. We identified 11 ANO10 gene variants in 10 patients from 8 families (10%): 4 mutations were previously described and 7 were novel. Age at onset ranged between 27 and 53 years. All patients presented ataxia, pyramidal signs and cerebellar atrophy at brain MRI. Additional signs were bradykinesia (7/10), mild vertical gaze paresis (5/10), pes cavus (4/10), and sphincteric disturbances (3/10). Six patients, with normal MMSE score, failed several neuropsychological tests rating executive functions. Three patients had giant somatosensory evoked potentials and epileptic spikes in EEG without clinical evidence of seizures. Our observational study indicates a high frequency of ARCA3 disease in sporadic patients with adult-onset cerebellar ataxia. We extended the ANO10 mutational spectrum with the identification of novel gene variants, and further defined the clinical, cognitive, and neurophysiological features in a new cohort of patients. These findings may contribute to the refinement of the complex ARCA3 phenotype and be valuable in clinical management and natural history studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Parodi L, Coarelli G, Stevanin G, Brice A, Durr A (2018) Hereditary ataxias and paraparesias: clinical and genetic update. Curr Opin Neurol 31:462–471

    PubMed  Google Scholar 

  2. Beaudin M, Klein CJ, Rouleau GA, Dupré N (2017) Systematic review of autosomal recessive ataxias and proposal for a classification. Cerebellum Ataxias 4:3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vermeer S, Hoischen A, Meijer RP et al (2010) Targeted next-generation sequencing of a 12.5 Mb homozygous region reveals ANO10 mutations in patients with autosomal-recessive cerebellar ataxia. Am J Hum Genet 87:813–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Renaud M, Anheim M, Kamsteeg EJ et al (2014) Autosomal recessive cerebellar ataxia type 3 due to ANO10 mutations: delineation and genotype-phenotype correlation study. JAMA Neurol 71:1305–1310

    Article  PubMed  Google Scholar 

  5. Balreira A, Boczonadi V, Barca E et al (2014) ANO10 mutations cause ataxia and coenzyme Q10 deficiency. J Neurol 261:2192–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fogel BL, Lee H, Deignan JL et al (2014) Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia. JAMA Neurol 71:1237–1246

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chamova T, Florez L, Guergueltcheva V et al (2012) ANO10 c.1150_1151del is a founder mutation causing autosomal recessive cerebellar ataxia in Roma/Gypsies. J Neurol 259:906–911

    Article  PubMed  Google Scholar 

  8. Maruyama H, Morino H, Miyamoto R, Murakami N, Hamano T, Kawakami H (2014) Exome sequencing reveals a novel ANO10 mutation in a Japanese patient with autosomal recessive spinocerebellar ataxia. Clin Genet 85:296–297

    Article  CAS  PubMed  Google Scholar 

  9. Yoshida K, Miyatake S, Kinoshita T et al (2014) ‘Cortical cerebellar atrophy’ dwindles away in the era of next-generation sequencing. J Hum Genet 59:589–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Minnerop M, Bauer P (2015) Autosomal recessive cerebellar ataxia 3 due to homozygote c.132dupA mutation within the ANO10 gene. JAMA Neurol 72:238–239

    Article  PubMed  Google Scholar 

  11. Chamard L, Sylvestre G, Koenig M, Magnin E (2016) Executive and attentional disorders, epilepsy and porencephalic cyst in autosomal recessive cerebellar ataxia type 3 due to ANO10 mutation. Eur Neurol 75:186–190

    Article  CAS  PubMed  Google Scholar 

  12. Mišković ND, Domingo A, Dobričić V et al (2016) Seemingly dominant inheritance of a recessive ANO10 mutation in romani families with cerebellar ataxia. Mov Disord 31:1929–1931

    Article  CAS  PubMed  Google Scholar 

  13. Bodranghien F, Oulad Ben Taib N, Van Maldergem L, Manto M (2017) A postural tremor highly responsive to transcranial cerebello-cerebral DCS in ARCA3. Front Neurol 8:71

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sun M, Johnson AK, Nelakuditi V et al (2018) Targeted exome analysis identifies the genetic basis of disease in over 50% of patients with a wide range of ataxia-related phenotypes. Genet Med. https://doi.org/10.1038/s41436-018-0007-7

    Article  PubMed  PubMed Central  Google Scholar 

  15. Coutelier M, Hammer MB, Stevanin G et al (2018) Efficacy of exome-targeted capture sequencing to detect mutations in known cerebellar ataxia genes. JAMA Neurol 75:591–599

    Article  PubMed  PubMed Central  Google Scholar 

  16. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424

    Article  PubMed  PubMed Central  Google Scholar 

  17. Halliday DM, Rosenberg JR, Amjad AM, Breeze P, Conway BA, Farmer SF (1995) A framework for the analysis of mixed time series/point process data—theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog Biophys Mol Biol 64:237–278

    Article  CAS  PubMed  Google Scholar 

  18. Panzica F, Canafoglia L, Franceschetti S et al (2003) Movement-activated myoclonus in genetically defined progressive myoclonic epilepsies: EEG-EMG relationship estimated using autoregressive models. Clin Neurophysiol 114:1041–1052

    Article  CAS  PubMed  Google Scholar 

  19. Mochizuki H, Hanajima R, Kowa H et al (2001) Somatosensory evoked potential recovery in myotonic dystrophy. Clin Neurophysiol 112:793–799

    Article  CAS  PubMed  Google Scholar 

  20. Visani E, Canafoglia L, Rossi Sebastiano D et al (2013) Giant SEPs and SEP-recovery function in Unverricht–Lundborg disease. Clin Neurophysiol 124:1013–1018

    Article  CAS  PubMed  Google Scholar 

  21. Synofzik M, Smets K, Mallaret M et al (2016) SYNE1 ataxia is a common recessive ataxia with major non-cerebellar features: a large multi-centre study. Brain 139:1378–1393

    Article  PubMed  PubMed Central  Google Scholar 

  22. Slapik M, Kronemer SI, Morgan O et al (2018) Visuospatial organization and recall in cerebellar ataxia. Cerebellum. https://doi.org/10.1007/s12311-018-0948-z

    Article  Google Scholar 

  23. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579

    Article  PubMed  Google Scholar 

  24. Saccà F, Costabile T, Abate F et al (2017) Normalization of timed neuropsychological tests with the PATA rate and nine-hole pegboard tests. J Neuropsychol 12:471–483

    Article  PubMed  Google Scholar 

  25. Martín-Palomeque G, Castro-Ortiz A, Pamplona-Valenzuela P, Saiz-Sepúlveda M, Cabañes-Martínez L, López JR (2017) Large amplitude cortical evoked potentials in nonepileptic patients. Reviving an old neurophysiologic tool to help detect CNS pathology. J Clin Neurophysiol 34:84–91

    Article  PubMed  Google Scholar 

  26. Miwa H, Mizuno Y (2002) Enlargements of somatosensory-evoked potentials in progressive supranuclear palsy. Acta Neurol Scand 106:209–212

    Article  CAS  PubMed  Google Scholar 

  27. Shimizu T, Bokuda K, Kimura H et al (2018) Sensory cortex hyperexcitability predicts short survival in amyotrophic lateral sclerosis. Neurology 90:1578–1587

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by research grants from the Italian Ministry of Health: RF-2011-02351165 (to F.T.), RF-2011-02347420 (to C.M.)

Funding

Research Grant RF-2011-02351165 from the Italian Ministry of Health to F.T., and RF-2011-02347420 to C.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Mariotti.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Ethical standard

All patients gave written informed consent for the clinical and genetic tests in agreement with the procedures approved by the Local Ethic Committee. The consent forms routinely used in our Hospital specifically enquire the patient consent for diagnostic and research purposes. Ethics committee approval is not required for retrospective anonymized observational studies.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

. ANO10 gene mutations identified in this study. (DOCX 24 KB)

Table S2

. Review of the literature summarizing genetic and clinical features in ARCA3 patients. (PDF 84 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanetti, L., Sarto, E., Castaldo, A. et al. ANO10 mutational screening in recessive ataxia: genetic findings and refinement of the clinical phenotype. J Neurol 266, 378–385 (2019). https://doi.org/10.1007/s00415-018-9141-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-018-9141-z

Keywords

Navigation