Journal of Neurology

, Volume 266, Issue 1, pp 174–182 | Cite as

Spinal motor neurons and motor function in older adults

  • Aron S. BuchmanEmail author
  • Sue E. Leurgans
  • Veronique G. J. M. VanderHorst
  • Sukriti Nag
  • Julie A. Schneider
  • David A. Bennett
Original Communication


This study examined the relation between lumbar spinal motor neuron (SMN) indices and motor function proximate to death in community-dwelling older adults. Older adults (N = 145) participating in the Rush Memory and Aging Project underwent structured clinical testing proximate to death and brain and spinal cord autopsy at time of death. Ten motor performances were summarized by a composite global motor score. Choline acetyltransferase immunostaining was used to identify spinal motor neurons of the L4/5 segment. SMN counts and area and ventral horn area were collected. Linear regression modeling showed that the association of SMN counts and density with global motor scores proximate to death varied with sex. Separate models in men and women showed that this significant interaction was due to the association of higher SMN counts and density with higher global motor scores proximate to death in men but not women. These associations were unchanged when we controlled for indices of brain pathologies or chronic health conditions. In 38 cases with counts of activated microglia available, higher counts of activated microglia were associated with lower SMN counts. Activated spinal microglia and loss of spinal motor neurons may contribute to motor impairments in older men.


Aging Motor function Spinal motor neurons Spinal microglia 



Spinal motor neuron


Central nervous system


Peripheral nervous system


Alzheimer’s disease


TAR DNA-binding protein 43


Body mass index



We thank all the participants in the Rush Memory and Aging Project. We also thank the staff of the Rush Alzheimer’s Disease Center. More information regarding obtaining (MAP) data for research use can be found at the RADC Research Resource Sharing Hub (


This work was supported by National Institute of Health Grants [R01AG17917 (DAB); R01AG24480; R01NS78009; R01AG43379 (ASB); R01AG47976]; and the Illinois Department of Public Health.

Compliance with ethical standards

Conflicts of interest

The authors do not declare any conflict of interest for this manuscript.

Ethical standards

The study was approved by the Institutional Review Board of Rush University Medical Center.

Informed consent

Written informed consent was obtained from all study participants.

Supplementary material

415_2018_9118_MOESM1_ESM.docx (65 kb)
Supplementary material 1 (DOCX 64 KB)


  1. 1.
    Albers MW, Gilmore GC, Kaye J, Murphy C, Wingfield A, Bennett DA, Boxer AL, Buchman AS, Cruickshanks KJ, Devanand DP, Duffy CJ, Gall CM, Gates GA, Granholm AC, Hensch T, Holtzer R, Hyman BT, Lin FR, McKee AC, Morris JC, Petersen RC, Silbert LC, Struble RG, Trojanowski JQ, Verghese J, Wilson DA, Xu S, Zhang LI (2015) At the interface of sensory and motor dysfunctions and Alzheimer’s disease. Alzheimers Dement 11:70–98CrossRefGoogle Scholar
  2. 2.
    Ambrose AF, Paul G, Hausdorff JM (2013) Risk factors for falls among older adults: a review of the literature. Maturitas 75:51–61CrossRefGoogle Scholar
  3. 3.
    Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116CrossRefGoogle Scholar
  4. 4.
    Bennett DA, Schneider JA, Buchman AS, Barnes LL, Boyle PA, Wilson RS (2012) Overview and findings from the rush memory and aging project. Curr Alzheimer Res 9:646–663CrossRefGoogle Scholar
  5. 5.
    Buchman AS, Leurgans SE, Boyle PA, Schneider JA, Arnold SE, Bennett DA (2011) Combinations of motor measures more strongly predict adverse health outcomes in old age: the rush memory and aging project, a community-based cohort study. BMC Med 9:42CrossRefGoogle Scholar
  6. 6.
    Buchman AS, Leurgans SE, Nag S, VanderHorst V, Kapasi A, Schneider JA, Bennett DA (2017) Spinal arteriolosclerosis is common in older adults and associated with parkinsonism. Stroke 48:2792–2798CrossRefGoogle Scholar
  7. 7.
    Buchman AS, Leurgans SE, Nag S, Vanderhorst VGJM, Kapasi A, Schneider JA, Bennett DA (2017) Spinal arteriolosclerosis is common in older adults and associated with parkinsonism. Stroke (in press) Google Scholar
  8. 8.
    Buchman AS, Leurgans SE, Weiss A, VanderHorst V, Mirelman A, Dawe R, Barnes LL, Wilson RS, Hausdorff JM, Bennett DA (2014) Associations between quantitative mobility measures derived from components of conventional mobility testing and Parkinsonian gait in older adults. PLoS One 9:e86262CrossRefGoogle Scholar
  9. 9.
    Buchman AS, Nag S, Leurgans SE, Miller J, VanderHorst V, Bennett DA, Schneider JA (2017) Spinal Lewy body pathology in older adults without an antemortem diagnosis of Parkinson’s disease. Brain PatholGoogle Scholar
  10. 10.
    Buchman AS, Nag S, Shulman JM, Lim AS, VanderHorst VG, Leurgans SE, Schneider JA, Bennett DA (2012) Locus coeruleus neuron density and parkinsonism in older adults without Parkinson’s disease. Mov Disord 27:1625–1631CrossRefGoogle Scholar
  11. 11.
    Buchman AS, Shulman JM, Nag S, Leurgans SE, Arnold SE, Morris MC, Schneider JA, Bennett DA (2012) Nigral pathology and parkinsonian signs in elders without Parkinson disease. Ann Neurol 71:258–266CrossRefGoogle Scholar
  12. 12.
    Buchman AS, Wilson RS, Shulman JM, Leurgans SE, Schneider JA, Bennett DA (2016) Parkinsonism in older adults and its association with adverse health outcomes and neuropathology. J Gerontol A Biol Sci Med Sci 71:549–556CrossRefGoogle Scholar
  13. 13.
    Buchman AS, Yu L, Boyle PA, Levine SR, Nag S, Schneider JA, Bennett DA (2013) Microvascular brain pathology and late-life motor impairment. Neurology 80:712–718CrossRefGoogle Scholar
  14. 14.
    Buchman AS, Yu L, Wilson RS, Boyle PA, Schneider JA, Bennett DA (2014) Brain pathology contributes to simultaneous change in physical frailty and cognition in old age. J Gerontol Ser A Biol Sci Med Sci 69:1536–1544CrossRefGoogle Scholar
  15. 15.
    Buchman AS, Yu L, Wilson RS, Schneider JA, Bennett DA (2013) Association of brain pathology with the progression of frailty in older adults. Neurology 80:2055–2061CrossRefGoogle Scholar
  16. 16.
    Buchman AS, Yu L, Wison RS, Dawe R, VanderHorst V, Schneider JA, Bennett DA (2015) Post-mortem brain pathology is related to declining respiratory function in community-dwelling older adults. Front Aging Neurosci 7Google Scholar
  17. 17.
    Clark BC, Collier SR, Manini TM, Ploutz-Snyder LL (2005) Sex differences in muscle fatigability and activation patterns of the human quadriceps femoris. Eur J Appl Physiol 94:196–206CrossRefGoogle Scholar
  18. 18.
    Corcos DM, Chen CM, Quinn NP, McAuley J, Rothwell JC (1996) Strength in Parkinson’s disease: relationship to rate of force generation and clinical status. Ann Neurol 39:79–88CrossRefGoogle Scholar
  19. 19.
    Cruz-Sanchez FF, Moral A, Tolosa E, de Belleroche J, Rossi ML (1998) Evaluation of neuronal loss, astrocytosis and abnormalities of cytoskeletal components of large motor neurons in the human anterior horn in aging. J Neural Transm (Vienna, Austria: 1996) 105:689–701CrossRefGoogle Scholar
  20. 20.
    Dawe RJ, Yu L, Leurgans SE, Schneider JA, Buchman AS, Arfanakis K, Bennett DA, Boyle PA (2016) Postmortem MRI: a novel window into the neurobiology of late life cognitive decline. Neurobiol Aging 45:169–177CrossRefGoogle Scholar
  21. 21.
    Doherty TJ (2003) Invited review: aging and sarcopenia. J Appl Physiol 95:1717–1727CrossRefGoogle Scholar
  22. 22.
    Ferrucci L, Bandinelli S, Benvenuti E, Di Iorio A, Macchi C, Harris TB, Guralnik JM (2000) Subsystems contributing to the decline in ability to walk: bridging the gap between epidemiology and geriatric practice in the InCHIANTI study. J Am Geriatr Soc 48:1618–1625CrossRefGoogle Scholar
  23. 23.
    Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56:M146–M156CrossRefGoogle Scholar
  24. 24.
    Giannakopoulos P, Hof PR, Michel JP, Guimon J, Bouras C (1997) Cerebral cortex pathology in aging and Alzheimer’s disease: a quantitative survey of large hospital-based geriatric and psychiatric cohorts. Brain Res Brain Res Rev 25:217–245CrossRefGoogle Scholar
  25. 25.
    Gosker HR, Wouters EF, van der Vusse GJ, Schols AM (2000) Skeletal muscle dysfunction in chronic obstructive pulmonary disease and chronic heart failure: underlying mechanisms and therapy perspectives. Am J Clin Nutr 71:1033–1047CrossRefGoogle Scholar
  26. 26.
    Gross C, Ellison B, Buchman AS, Terasawa E, VanderHorst VG (2017) A novel approach for assigning levels to monkey and human lumbosacral spinal cord based on ventral horn morphology. PLoS One 12:e0177243CrossRefGoogle Scholar
  27. 27.
    Hunter SK (2016) Sex differences in fatigability of dynamic contractions. Exp Physiol 101:250–255CrossRefGoogle Scholar
  28. 28.
    Johnson ST, Kipp K, Hoffman MA (2012) Spinal motor control differences between the sexes. Eur J Appl Physiol 112:3859–3864CrossRefGoogle Scholar
  29. 29.
    Kawamura Y, Okazaki H, O’brien PC, Dyck PJ (1977) Lumbar motoneurons of man: I) Number and diameter histogram of alpha and gamma axons of ventral root. J Neuropathol Exp Neurol 36:851–860Google Scholar
  30. 30.
    Kawamura Y, Okazaki H, O’brien PC, Dyck PJ (1977) Lumbar motoneurons of man: II) The number and diameter distribution of large and intermediate-diameter cytons in “motoneuron columns” of spinal cord of man. J Neuropathol Exp Neurol 36:861–870CrossRefGoogle Scholar
  31. 31.
    Kemppainen NM, Aalto S, Wilson IA, Nagren K, Helin S, Bruck A, Oikonen V, Kailajarvi M, Scheinin M, Viitanen M, Parkkola R, Rinne JO (2007) PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology 68:1603–1606CrossRefGoogle Scholar
  32. 32.
    Kemppainen NM, Aalto S, Wilson IA, Nagren K, Helin S, Bruck A, Oikonen V, Kailajarvi M, Scheinin M, Viitanen M, Parkkola R, Rinne JO (2006) Voxel-based analysis of PET amyloid ligand [11C]PIB uptake in Alzheimer disease. Neurology 67:1575–1580CrossRefGoogle Scholar
  33. 33.
    Lee J, Hyeon SJ, Im H, Ryu H, Kim Y, Ryu H (2016) Astrocytes and microglia as non-cell autonomous players in the pathogenesis of ALS. Exp Neurobiol 25:233–240CrossRefGoogle Scholar
  34. 34.
    Lexell J, Downham DY (1991) The occurrence of fibre-type grouping in healthy human muscle: a quantitative study of cross-sections of whole vastus lateralis from men between 15 and 83 years. Acta Neuropathol (Berl) 81:377–381CrossRefGoogle Scholar
  35. 35.
    Ling SM, Conwit RA, Ferrucci L, Metter EJ (2009) Age-associated changes in motor unit physiology: observations from the Baltimore Longitudinal Study of Aging. Arch Phys Med Rehabil 90:1237–1240CrossRefGoogle Scholar
  36. 36.
    Mierzejewska-Krzyzowska B, Bukowska D, Taborowska M, Celichowski J (2014) Sex differences in the number and size of motoneurons innervating rat medial gastrocnemius muscle. Anat Histol Embryol 43:182–189CrossRefGoogle Scholar
  37. 37.
    Rosso AL, Studenski SA, Chen WG, Aizenstein HJ, Alexander NB, Bennett DA, Black SE, Camicioli R, Carlson MC, Ferrucci L, Guralnik JM, Hausdorff JM, Kaye J, Launer LJ, Lipsitz LA, Verghese J, Rosano C (2013) Aging, the central nervous system, and mobility. J Gerontol Ser A Biol Sci Med Sci 68:1379–1386CrossRefGoogle Scholar
  38. 38.
    Rowland LP (1998) Diagnosis of amyotrophic lateral sclerosis. J Neurol Sci 160(Suppl 1):S6–S24CrossRefGoogle Scholar
  39. 39.
    Stalberg E, Fawcett PR (1982) Macro EMG in healthy subjects of different ages. J Neurol Neurosurg Psychiatry 45:870–878CrossRefGoogle Scholar
  40. 40.
    Tomlinson BE, Irving D (1977) The loss of limb motor neurons in the human lumbosacral cord throughout life. J Neurol Sci 34:213–219CrossRefGoogle Scholar
  41. 41.
    Vanderhorst VG, Holstege G (1997) Organization of lumbosacral motoneuronal cell groups innervating hindlimb, pelvic floor, and axial muscles in the cat. J Comp Neurol 382:46–76CrossRefGoogle Scholar
  42. 42.
    Vandervoort AA (2002) Aging of the human neuromuscular system. Muscle Nerve 25:17–25CrossRefGoogle Scholar
  43. 43.
    Wang Y, Hashizume Y, Yoshida M, Inagaki T, Kameyama T (1999) Pathological changes of the spinal cord in centenarians. Pathol Int 49:118–124CrossRefGoogle Scholar
  44. 44.
    Williams RW, Rakic P (1988) Three-dimensional counting: an accurate and direct method to estimate numbers of cells in sectioned material. J Comp Neurol 278:344–352CrossRefGoogle Scholar
  45. 45.
    Wilson RS, Segawa E, Buchman AS, Boyle PA, Hizel LP, Bennett DA (2012) Terminal decline in motor function. Psych Aging 4:988–1007Google Scholar
  46. 46.
    Yogev-Seligmann G, Giladi N, Gruendlinger L, Hausdorff JM (2013) The contribution of postural control and bilateral coordination to the impact of dual tasking on gait. Exp Brain Res 226:81–93CrossRefGoogle Scholar
  47. 47.
    Zhang C, Goto N, Suzuki M, Ke M (1996) Age-related reductions in number and size of anterior horn cells at C6 level of the human spinal cord. Okajimas Folia Anat Jpn 73:171–177CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Aron S. Buchman
    • 1
    • 2
    Email author
  • Sue E. Leurgans
    • 1
    • 2
  • Veronique G. J. M. VanderHorst
    • 3
    • 4
  • Sukriti Nag
    • 1
    • 5
  • Julie A. Schneider
    • 1
    • 2
    • 5
  • David A. Bennett
    • 1
    • 2
  1. 1.Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoUSA
  2. 2.Department of Neurological SciencesRush University Medical CenterChicagoUSA
  3. 3.Department of NeurologyBeth Israel Deaconess Medical CenterBostonUSA
  4. 4.Harvard Medical SchoolBostonUSA
  5. 5.Department of Pathology (Neuropathology)Rush University Medical CenterChicagoUSA

Personalised recommendations