Journal of Neurology

, Volume 265, Issue 11, pp 2562–2572 | Cite as

Neural correlates of changes in sexual function in frontotemporal dementia: implications for reward and physiological functioning

  • Rebekah M. AhmedEmail author
  • Zoë-lee Goldberg
  • Cassandra Kaizik
  • Matthew C. Kiernan
  • John R. Hodges
  • Olivier Piguet
  • Muireann Irish
Original Communication



Frontotemporal dementia (FTD) is characterised by changes in behaviour including alterations in sexual function. While hypersexual behaviour is commonly thought to predominate, emerging evidence suggests that hyposexual behaviour is in fact most prevalent. The underlying mechanisms driving these behavioural changes remain unclear; however, likely reflect interactions between cognitive, emotional, reward processing and physiological functioning. We aimed to systematically quantify changes in sexual behaviour in behavioural variant FTD (bvFTD) and semantic dementia (SD) in contrast with Alzheimer’s disease (AD) and to elucidate the neural correlates of these changes using whole-brain voxel-based morphometry.


Carers of 62 dementia patients (30 bvFTD, 12 SD, 20 AD) were interviewed using the Sexual Behaviour and Intimacy Questionnaire, which assesses changes in sexual function. Voxel-based morphometry analysis of structural MRI brain scans was used to determine the association between changes in grey matter intensity and the presence of hyposexual, hypersexual, and inappropriate sexual behaviour across groups.


Widespread attenuation of sexual drive, intimacy and the display of affection were evident irrespective of dementia subtype. In contrast, hypersexual and inappropriate sexual behaviour was present in only a small proportion of patients. Neuroimaging analyses revealed an association between hyposexual behaviour and atrophy of the right supramarginal gyrus, middle frontal gyrus and thalamus, whilst hypersexual behaviour was associated with cerebellar atrophy.


Counter to the prevailing view, younger-onset dementia syndromes predominantly display an attenuation in sexual drive. Changes in sexual function likely reflect the degeneration of cortical and subcortical neural circuits implicated in reward, autonomic function, empathy, and emotional processing.


Frontotemporal dementia Alzheimer’s disease Reward Physiology Sexual function Hypothalamus Neurodegeneration Neuroendocrine 



This work was supported in part by funding to Forefront, a collaborative research group dedicated to the study of frontotemporal dementia and amyotrophic lateral sclerosis, from the National Health and Medical Research Council of Australia (NHMRC) programme grant (#1037746 to MK and JH) and the Australian Research Council Centre of Excellence in Cognition and its Disorders Memory Program (#CE110001021 to OP and JH). We are grateful to the research participants involved with the ForeFront research studies. RA is a NHMRC Early Career Fellow (#1120770). OP is a NHMRC Senior Research Fellow (#1103258). MI is supported by an Australian Research Council Future Fellowship (FT160100096).

Compliance with ethical standards

Conflicts of interest

No author reports any conflict of interest. MCK is Editor in chief of Journal of Neurology Neurosurgery and Psychiatry.

Supplementary material

415_2018_9024_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 26 KB)


  1. 1.
    Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, van Swieten JC, Seelaar H, Dopper EG, Onyike CU, Hillis AE, Josephs KA, Boeve BF, Kertesz A, Seeley WW, Rankin KP, Johnson JK, Gorno-Tempini ML, Rosen H, Prioleau-Latham CE, Lee A, Kipps CM, Lillo P, Piguet O, Rohrer JD, Rossor MN, Warren JD, Fox NC, Galasko D, Salmon DP, Black SE, Mesulam M, Weintraub S, Dickerson BC, Diehl-Schmid J, Pasquier F, Deramecourt V, Lebert F, Pijnenburg Y, Chow TW, Manes F, Grafman J, Cappa SF, Freedman M, Grossman M, Miller BL (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477CrossRefGoogle Scholar
  2. 2.
    Irish M, Piguet O, Hodges JR (2011) Self-projection and the default network in frontotemporal dementia. Nat Rev Neurol 8:152–161CrossRefGoogle Scholar
  3. 3.
    Ahmed RM, Ke YD, Vucic S, Ittner LM, Seeley W, Hodges JR, Piguet O, Halliday G, Kiernan MC (2018) Physiological changes in neurodegeneration—mechanistic insights and clinical utility. Nat Rev Neurol 14:259–271CrossRefGoogle Scholar
  4. 4.
    Ahmed RM, Irish M, Piguet O, Halliday GM, Ittner LM, Farooqi S, Hodges JR, Kiernan MC (2016) Amyotrophic lateral sclerosis and frontotemporal dementia: distinct and overlapping changes in eating behaviour and metabolism. Lancet Neurol 15:332–342CrossRefGoogle Scholar
  5. 5.
    Ahmed RM, Latheef S, Bartley L, Irish M, Halliday GM, Kiernan MC, Hodges JR, Piguet O (2015) Eating behavior in frontotemporal dementia: peripheral hormones vs hypothalamic pathology. Neurology 85:1310–1317CrossRefGoogle Scholar
  6. 6.
    Baird AD, Wilson SJ, Bladin PF, Saling MM, Reutens DC (2007) Neurological control of human sexual behaviour: insights from lesion studies. J Neurol Neurosurg Psychiatry 78:1042–1049CrossRefGoogle Scholar
  7. 7.
    Poetter CE, Stewart JT (2012) Treatment of indiscriminate, inappropriate sexual behavior in frontotemporal dementia with carbamazepine. J Clin Psychopharmacol 32:137–138CrossRefGoogle Scholar
  8. 8.
    Mendez MF, Shapira JS (2011) Internet pornography and frontotemporal dementia. J Neuropsychiatry Clin Neurosci 23:E3CrossRefGoogle Scholar
  9. 9.
    Reeves RR, Perry CL (2013) Aripiprazole for sexually inappropriate vocalizations in frontotemporal dementia. J Clin Psychopharmacol 33:145–146CrossRefGoogle Scholar
  10. 10.
    Perry DC, Sturm VE, Seeley WW, Miller BL, Kramer JH, Rosen HJ (2014) Anatomical correlates of reward-seeking behaviours in behavioural variant frontotemporal dementia. Brain 137:1621–1626CrossRefGoogle Scholar
  11. 11.
    Mendez MF, Shapira JS (2013) Hypersexual behavior in frontotemporal dementia: a comparison with early-onset Alzheimer’s disease. Arch Sex Behav 42:501–509CrossRefGoogle Scholar
  12. 12.
    Kumfor F, Zhen A, Hodges JR, Piguet O, Irish M (2018) Apathy in Alzheimer’s disease and frontotemporal dementia: distinct clinical profiles and neural correlates. Cortex 103:350–359CrossRefGoogle Scholar
  13. 13.
    Miller BL, Darby AL, Swartz JR, Yener GG, Mena I (1995) Dietary changes, compulsions and sexual behavior in frontotemporal degeneration. Dementia 6:195–199PubMedGoogle Scholar
  14. 14.
    Ahmed RM, Kaizik C, Irish M, Mioshi E, Dermody N, Kiernan MC, Piguet O, Hodges JR (2015) Characterizing sexual behavior in frontotemporal dementia. J Alzheimers Dis 46:677–686CrossRefGoogle Scholar
  15. 15.
    Hsieh S, Irish M, Daveson N, Hodges JR, Piguet O (2013) When one loses empathy: its effect on carers of patients with dementia. J Geriatr Psychiatry Neurol 26:174–184CrossRefGoogle Scholar
  16. 16.
    Zamboni G, Huey ED, Krueger F, Nichelli PF, Grafman J (2008) Apathy and disinhibition in frontotemporal dementia: insights into their neural correlates. Neurology 71:736–742CrossRefGoogle Scholar
  17. 17.
    Irish M, Hodges JR, Piguet O (2014) Right anterior temporal lobe dysfunction underlies theory of mind impairments in semantic dementia. Brain 137:1241–1253CrossRefGoogle Scholar
  18. 18.
    Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, Ogar JM, Rohrer JD, Black S, Boeve BF, Manes F, Dronkers NF, Vandenberghe R, Rascovsky K, Patterson K, Miller BL, Knopman DS, Hodges JR, Mesulam MM, Grossman M (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014CrossRefGoogle Scholar
  19. 19.
    McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269CrossRefGoogle Scholar
  20. 20.
    Mioshi E, Hsieh S, Savage S, Hornberger M, Hodges JR (2010) Clinical staging and disease progression in frontotemporal dementia. Neurology 74:1591–1597CrossRefGoogle Scholar
  21. 21.
    Mioshi E, Dawson K, Mitchell J, Arnold R, Hodges JR (2006) The Addenbrooke’s cognitive examination revised (ACE-R): a brief cognitive test battery for dementia screening. Int J Geriatr Psychiatry 21:1078–1085CrossRefGoogle Scholar
  22. 22.
    Hsieh S, Schubert S, Hoon C, Mioshi E, Hodges JR (2013) Validation of the Addenbrooke’s Cognitive Examination III in frontotemporal dementia and Alzheimer’s disease. Dement Geriatr Cogn Disord 36:242–250CrossRefGoogle Scholar
  23. 23.
    Wedderburn C, Wear H, Brown J, Mason SJ, Barker RA, Hodges J, Williams-Gray C (2008) The utility of the Cambridge Behavioural Inventory in neurodegenerative disease. J Neurol Neurosurg Psychiatry 79:500–503CrossRefGoogle Scholar
  24. 24.
    Davis M (1983) Measuring individual differences in empathy: evidence for a multidimensional approach. J Personal Soc Psychol 44:113–126CrossRefGoogle Scholar
  25. 25.
    Dermody N, Wong S, Ahmed R, Piguet O, Hodges JR, Irish M (2016) Uncovering the neural bases of cognitive and affective empathy deficits in Alzheimer’s disease and the behavioral-variant of frontotemporal dementia. J Alzheimers Dis 53:801–816CrossRefGoogle Scholar
  26. 26.
    Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11:805–821CrossRefGoogle Scholar
  27. 27.
    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219CrossRefGoogle Scholar
  28. 28.
    Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155CrossRefGoogle Scholar
  29. 29.
    Zhang YY, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57CrossRefGoogle Scholar
  30. 30.
    Andersson JLR, Jenkinson M, Smith S (2007) Non-linear optimisation, in FMRIB Technical Report TR07JA1. University of Oxford FMRIB Centre, OxfordGoogle Scholar
  31. 31.
    Andersson JLR, Jenkinson M, Smith S (2007) Non-linear registration, aka spatial normalisation, in FMRIB Technical Report TR07JA2. University of Oxford FMRIB Centre, OxfordGoogle Scholar
  32. 32.
    Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18:712–721CrossRefGoogle Scholar
  33. 33.
    Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25CrossRefGoogle Scholar
  34. 34.
    Lieberman MD, Cunningham WA (2009) Type I and Type II error concerns in fMRI research: re-balancing the scale. Soc Cogn Affect Neurosci 4:423–428CrossRefGoogle Scholar
  35. 35.
    Silani G, Lamm C, Ruff CC, Singer T (2013) Right supramarginal gyrus is crucial to overcome emotional egocentricity bias in social judgments. J Neurosci 33:15466–15476CrossRefGoogle Scholar
  36. 36.
    Saxe R, Wexler A (2005) Making sense of another mind: the role of the right temporo-parietal junction. Neuropsychologia 43:1391–1399CrossRefGoogle Scholar
  37. 37.
    Japee S, Holiday K, Satyshur MD, Mukai I, Ungerleider LG (2015) A role of right middle frontal gyrus in reorienting of attention: a case study. Front Syst Neurosci 9:23CrossRefGoogle Scholar
  38. 38.
    Komura Y, Tamura R, Uwano T, Nishijo H, Kaga K, Ono T (2001) Retrospective and prospective coding for predicted reward in the sensory thalamus. Nature 412:546–549CrossRefGoogle Scholar
  39. 39.
    Chakraborty S, Kolling N, Walton ME, Mitchell AS (2016) Critical role for the mediodorsal thalamus in permitting rapid reward-guided updating in stochastic reward environments. eLife 5:e13588CrossRefGoogle Scholar
  40. 40.
    Ahmed RM, Irish M, Henning E, Dermody N, Bartley L, Kiernan MC, Piguet O, Farooqi S, Hodges JR (2016) Assessment of eating behavior disturbance and associated neural networks in frontotemporal dementia. JAMA Neurol 73:282–290CrossRefGoogle Scholar
  41. 41.
    Fletcher PD, Downey LE, Golden HL, Clark CN, Slattery CF, Paterson RW, Rohrer JD, Schott JM, Rossor MN, Warren JD (2015) Pain and temperature processing in dementia: a clinical and neuroanatomical analysis. Brain 138:3360–3372CrossRefGoogle Scholar
  42. 42.
    Kullmann S, Heni M, Linder K, Zipfel S, Haring HU, Veit R, Fritsche A, Preissl H (2014) Resting-state functional connectivity of the human hypothalamus. Hum Brain Mapp 35:6088–6096CrossRefGoogle Scholar
  43. 43.
    Schmahmann JD (2016) Cerebellum in Alzheimer’s disease and frontotemporal dementia: not a silent bystander. Brain 139:1314–1318CrossRefGoogle Scholar
  44. 44.
    Synn A, Mothakunnel A, Kumfor F, Chen Y, Piguet O, Hodges JR, Irish M (2018) Mental states in moving shapes: distinct cortical and subcortical contributions to theory of mind impairments in dementia. J Alzheimers Dis 61:521–535CrossRefGoogle Scholar
  45. 45.
    Wagner MJ, Kim TH, Savall J, Schnitzer MJ, Luo L (2017) Cerebellar granule cells encode the expectation of reward. Nature 544:96–100CrossRefGoogle Scholar
  46. 46.
    Guo CC, Tan R, Hodges JR, Hu X, Sami S, Hornberger M (2016) Network-selective vulnerability of the human cerebellum to Alzheimer’s disease and frontotemporal dementia. Brain 139:1527–1538CrossRefGoogle Scholar
  47. 47.
    Grahn JA, Parkinson JA, Owen AM (2008) The cognitive functions of the caudate nucleus. Prog Neurobiol 86:141–155CrossRefGoogle Scholar
  48. 48.
    Hillis AE (2014) Inability to empathize: brain lesions that disrupt sharing and understanding another’s emotions. Brain 137:981–997CrossRefGoogle Scholar
  49. 49.
    O’Connor CM, Clemson L, Hornberger M, Leyton CE, Hodges JR, Piguet O, Mioshi E (2016) Longitudinal change in everyday function and behavioral symptoms in frontotemporal dementia. Neurol Clin Pract 6:419–428CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rebekah M. Ahmed
    • 1
    • 2
    Email author
  • Zoë-lee Goldberg
    • 3
  • Cassandra Kaizik
    • 1
    • 2
  • Matthew C. Kiernan
    • 1
    • 2
  • John R. Hodges
    • 1
    • 4
  • Olivier Piguet
    • 3
    • 4
  • Muireann Irish
    • 3
    • 4
  1. 1.ForeFront Clinic, Sydney Medical School, Brain and Mind CentreThe University of SydneySydneyAustralia
  2. 2.Memory and Cognition Clinic, Institute of Clinical NeurosciencesRoyal Prince Alfred HospitalSydneyAustralia
  3. 3.School of Psychology and Brain and Mind CentreThe University of SydneySydneyAustralia
  4. 4.ARC Centre of Excellence in Cognition and its DisordersSydneyAustralia

Personalised recommendations