Skip to main content
Log in

Extrapyramidal deficits in ALS: a combined biomechanical and neuroimaging study

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Introduction

Extrapyramidal deficits are poorly characterised in amyotrophic lateral sclerosis (ALS) despite their contribution to functional disability, increased fall risk and their quality-of-life implications. Given the concomitant pyramidal and cerebellar degeneration in ALS, the clinical assessment of extrapyramidal features is particularly challenging.

Objective

The comprehensive characterisation of postural instability in ALS using standardised clinical assessments, gait analyses and computational neuroimaging tools in a prospective study design.

Methods

Parameters of gait initiation in the anticipatory postural adjustment phase (APA) and execution phase (EP) were evaluated in ALS patients with and without postural instability and healthy controls. Clinical and gait analysis parameters were interpreted in the context of brain imaging findings.

Results

ALS patients with postural instability exhibit impaired gait initiation with an altered APA phase, poor dynamic postural control and significantly decreased braking index. Consistent with their clinical profile, “unsteady” ALS patients have reduced caudate and brain stem volumes compared to “steady” ALS patients.

Interpretation

Our findings highlight that the ALS functional rating scale (ALSFRS-r) does not account for extrapyramidal deficits, which are major contributors to gait impairment in a subset of ALS patients. Basal ganglia degeneration in ALS does not only contribute to cognitive and behavioural deficits, but also adds to the heterogeneity of motor disability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Turner MR, Hardiman O, Benatar M, Brooks BR, Chio A, de Carvalho M, Ince PG, Lin C, Miller RG, Mitsumoto H, Nicholson G, Ravits J, Shaw PJ, Swash M, Talbot K, Traynor BJ, Van den Berg LH, Veldink JH, Vucic S, Kiernan MC (2013) Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol 12:310–322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, Nakanishi A, Grp BAS (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. J Neurol Sci 169:13–21

    Article  PubMed  CAS  Google Scholar 

  3. de Carvalho M, Chio A, Dengler R, Hecht M, Weber M, Swash M (2005) Neurophysiological measures in amyotrophic lateral sclerosis: markers of progression in clinical trials. Amyotroph Lateral Scler Other Motor Neuron Disord 6:17–28

    Article  PubMed  Google Scholar 

  4. Bede P, Bokde A, Elamin M, Byrne S, McLaughlin RL, Jordan N, Hampel H, Gallagher L, Lynch C, Fagan AJ, Pender N, Hardiman O (2013) Grey matter correlates of clinical variables in amyotrophic lateral sclerosis (ALS): a neuroimaging study of ALS motor phenotype heterogeneity and cortical focality. J Neurol Neurosurg Psychiatry 84:766–773

    Article  PubMed  Google Scholar 

  5. Phukan J, Elamin M, Bede P, Jordan N, Gallagher L, Byrne S, Lynch C, Pender N, Hardiman O (2012) The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry 83:102–108

    Article  PubMed  Google Scholar 

  6. Bede P, Elamin M, Byrne S, McLaughlin RL, Kenna K, Vajda A, Fagan A, Bradley DG, Hardiman O (2015) Patterns of cerebral and cerebellar white matter degeneration in ALS. J Neurol Neurosurg Psychiatry 86:468–470

    Article  PubMed  CAS  Google Scholar 

  7. Bede P, Elamin M, Byrne S, McLaughlin RL, Kenna K, Vajda A, Pender N, Bradley DG, Hardiman O (2013) Basal ganglia involvement in amyotrophic lateral sclerosis. Neurology 81:2107–2115

    Article  PubMed  Google Scholar 

  8. Desai J, Swash M (1999) Extrapyramidal involvement in amyotrophic lateral sclerosis: backward falls and retropulsion. J Neurol Neurosurg Psychiatry 67:214–216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Pradat P-F, Bruneteau G, Munerati E, Salachas F, Le Forestier N, Lacomblez L, Lenglet T, Meininger V (2009) Extrapyramidal stiffness in patients with amyotrophic lateral sclerosis. Mov Disord 24:2143–2148

    Article  PubMed  Google Scholar 

  10. Sanjak M, Hirsch MA, Bravver EK, Bockenek WL, Norton HJ, Brooks BR (2014) Vestibular deficits leading to disequilibrium and falls in ambulatory amyotrophic lateral sclerosis. Arch Phys Med Rehabil 95:1933–1939

    Article  PubMed  Google Scholar 

  11. Prell T, Grosskreutz J (2013) The involvement of the cerebellum in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 14:507–515

    Article  PubMed  CAS  Google Scholar 

  12. Radovanovic S, Milicev M, Peric S, Basta I, Kostic V, Stevic Z (2014) Gait in amyotrophic lateral sclerosis: is gait pattern differently affected in spinal and bulbar onset of the disease during dual task walking? Amyotroph Lateral Scler Frontotemporal Degener 15:488–493

    Article  PubMed  Google Scholar 

  13. Elamin M, Bede P, Byrne S, Jordan N, Gallagher L, Wynne B, O’Brien C, Phukan J, Lynch C, Pender N (2013) Cognitive changes predict functional decline in ALS. A population-based longitudinal study. Neurology 80:1590–1597

    Article  PubMed  Google Scholar 

  14. Elamin M, Phukan J, Bede P, Jordan N, Byrne S, Pender N, Hardiman O (2011) Executive dysfunction is a negative prognostic indicator in patients with ALS without dementia. Neurology 76:1263–1269

    Article  PubMed  CAS  Google Scholar 

  15. Olney RK, Murphy J, Forshew D, Garwood E, Miller BL, Langmore S, Kohn MA, Lomen-Hoerth C (2005) The effects of executive and behavioral dysfunction on the course of ALS. Neurology 65:1774–1777

    Article  PubMed  CAS  Google Scholar 

  16. Majmudar S, Wu J, Paganoni S (2014) Rehabilitation in amyotrophic lateral sclerosis: why it matters. Muscle Nerve 50:4–13

    Article  PubMed  PubMed Central  Google Scholar 

  17. Montes J, Cheng B, Diamond B, Doorish C, Mitsumoto H, Gordon PH (2007) The Timed Up and Go test: predicting falls in ALS. Amyotroph Lateral Sclerosis 8:292–295

    Article  Google Scholar 

  18. Peterson DS, Horak FB (2016) Neural control of walking in people with Parkinsonism. Physiology (Bethesda Md) 31:95–107

    CAS  Google Scholar 

  19. Hausdorff JM, Lertratanakul A, Cudkowicz ME, Peterson AL, Kaliton D, Goldberger AL (2000) Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J Appl Physiol (Bethesda, Md: 1985) 88:2045–2053

    Article  CAS  Google Scholar 

  20. Lepers R, Breniere Y (1995) The role of anticipatory postural adjustments and gravity in gait initiation. Exp Brain Res 107:118–124

    Article  PubMed  CAS  Google Scholar 

  21. Anand M, Seipel J, Rietdyk S (2017) A modelling approach to the dynamics of gait initiation. J R Soc Interface 14:20170043

    Article  PubMed  PubMed Central  Google Scholar 

  22. Isaias IU, Dipaola M, Michi M, Marzegan A, Volkmann J, Rodocanachi Roidi ML, Frigo CA, Cavallari P (2014) Gait initiation in children with Rett syndrome. PLoS One 9:e92736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Welter ML, Do MC, Chastan N, Torny F, Bloch F, du Montcel ST, Agid Y (2007) Control of vertical components of gait during initiation of walking in normal adults and patients with progressive supranuclear palsy. Gait posture 26:393–399

    Article  PubMed  Google Scholar 

  24. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron D (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299

    Article  PubMed  CAS  Google Scholar 

  25. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, van Swieten JC, Seelaar H, Dopper EGP, Onyike CU, Hillis AE, Josephs KA, Boeve BF, Kertesz A, Seeley WW, Rankin KP, Johnson JK, Gorno-Tempini ML, Rosen H, Prioleau-Latham CE, Lee A, Kipps CM, Lillo P, Piguet O, Rohrer JD, Rossor MN, Warren JD, Fox NC, Galasko D, Salmon DP, Black SE, Mesulam M, Weintraub S, Dickerson BC, Diehl-Schmid J, Pasquier F, Deramecourt V, Lebert F, Pijnenburg Y, Chow TW, Manes F, Grafman J, Cappa SF, Freedman M, Grossman M, Miller BL (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain J Neurol 134:2456–2477

    Article  Google Scholar 

  26. Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease (2003) The Unified Parkinson’s Disease Rating Scale (UPDRS): status and recommendations. Mov Disord 18:738–750

    Article  Google Scholar 

  27. Bohannon RW, Smith MB (1987) Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 67:206–207

    Article  PubMed  CAS  Google Scholar 

  28. Berg K, Wood-Dauphinee S, Williams JI (1995) The Balance Scale: reliability assessment with elderly residents and patients with an acute stroke. Scand J Rehabil Med 27:27–36

    PubMed  CAS  Google Scholar 

  29. Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage 56:907–922

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gilbert RM, Fahn S, Mitsumoto H, Rowland LP (2010) Parkinsonism and motor neuron diseases: twenty-seven patients with diverse overlap syndromes. Mov Disord 25:1868–1875

    Article  PubMed  Google Scholar 

  31. Snow BJ, Peppard RF, Guttman M, Okada J, Martin WR, Steele J, Eisen A, Carr G, Schoenberg B, Calne D (1990) Positron emission tomographic scanning demonstrates a presynaptic dopaminergic lesion in Lytico-Bodig. The amyotrophic lateral sclerosis-parkinsonism-dementia complex of Guam. Arch Neurol 47:870–874

    Article  PubMed  CAS  Google Scholar 

  32. Takahashi H, Snow BJ, Bhatt MH, Peppard R, Eisen A, Calne DB (1993) Evidence for a dopaminergic deficit in sporadic amyotrophic lateral sclerosis on positron emission scanning. Lancet 342:1016–1018

    Article  PubMed  CAS  Google Scholar 

  33. Borasio GD, Linke R, Schwarz J, Schlamp V, Abel A, Mozley PD, Tatsch K (1998) Dopaminergic deficit in amyotrophic lateral sclerosis assessed with [I-123] IPT single photon emission computed tomography. J Neurol Neurosurg Psychiatry 65:263–265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sharma KR, Saigal G, Maudsley AA, Govind V (2011) 1H MRS of basal ganglia and thalamus in amyotrophic lateral sclerosis. NMR Biomed 24:1270–1276

    Article  PubMed  PubMed Central  Google Scholar 

  35. Verma G, Woo JH, Chawla S, Wang S, Sheriff S, Elman LB, McCluskey LF, Grossman M, Melhem ER, Maudsley AA, Poptani H (2013) Whole-brain analysis of amyotrophic lateral sclerosis by using echo-planar spectroscopic imaging. Radiology 267:851–857

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fathinia P, Hermann A, Reuner U, Kassubek J, Storch A, Ludolph AC (2013) Parkinson’s disease-like midbrain hyperechogenicity is frequent in amyotrophic lateral sclerosis. J Neurol 260:454–457

    Article  PubMed  Google Scholar 

  37. Prell T, Schenk A, Witte OW, Grosskreutz J, Gunther A (2014) Transcranial brainstem sonography as a diagnostic tool for amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 15:244–249

    Article  PubMed  Google Scholar 

  38. Kato S, Oda M, Tanabe H (1993) Diminution of dopaminergic neurons in the substantia nigra of sporadic amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 19:300–304

    Article  PubMed  CAS  Google Scholar 

  39. Brettschneider J, Arai K, Del Tredici K, Toledo JB, Robinson JL, Lee EB, Kuwabara S, Shibuya K, Irwin DJ, Fang L, Van Deerlin VM, Elman L, McCluskey L, Ludolph AC, Lee VM, Braak H, Trojanowski JQ (2014) TDP-43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord. Acta Neuropathol 128:423–437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Majoor-Krakauer D, Ottman R, Johnson WG, Rowland LP (1994) Familial aggregation of amyotrophic lateral sclerosis, dementia, and Parkinson’s disease: evidence of shared genetic susceptibility. Neurology 44:1872–1877

    Article  PubMed  CAS  Google Scholar 

  41. Longinetti E, Mariosa D, Larsson H, Ye W, Ingre C, Almqvist C, Lichtenstein P, Piehl F, Fang F (2017) Neurodegenerative and psychiatric diseases among families with amyotrophic lateral sclerosis. Neurology 89:578–585

    Article  PubMed  PubMed Central  Google Scholar 

  42. Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, Armakola M, Geser F, Greene R, Lu MM, Padmanabhan A, Clay-Falcone D, McCluskey L, Elman L, Juhr D, Gruber PJ, Rub U, Auburger G, Trojanowski JQ, Lee VM, Van Deerlin VM, Bonini NM, Gitler AD (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466:1069–1075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Eisen A, Calne D (1992) Amyotrophic lateral sclerosis, Parkinson’s disease and Alzheimer’s disease: phylogenetic disorders of the human neocortex sharing many characteristics. Can J Neurol Sci 19:117–123

    PubMed  CAS  Google Scholar 

  44. Eisen A, Turner MR, Lemon R (2014) Tools and talk: an evolutionary perspective on the functional deficits associated with amyotrophic lateral sclerosis. Muscle Nerve 49:469–477

    Article  PubMed  Google Scholar 

  45. Maillet A, Pollak P, Debu B (2012) Imaging gait disorders in parkinsonism: a review. J Neurol Neurosurg Psychiatry 83:986–993

    Article  PubMed  Google Scholar 

  46. la Fougere C, Zwergal A, Rominger A, Forster S, Fesl G, Dieterich M, Brandt T, Strupp M, Bartenstein P, Jahn K (2010) Real versus imagined locomotion: a [18F]-FDG PET-fMRI comparison. NeuroImage 50:1589–1598

    Article  PubMed  Google Scholar 

  47. Karim HT, Sparto PJ, Aizenstein HJ, Furman JM, Huppert TJ, Erickson KI, Loughlin PJ (2014) Functional MR imaging of a simulated balance task. Brain Res 1555:20–27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Visser JE, Bloem BR (2005) Role of the basal ganglia in balance control. Neural Plast 12:161–174 (discussion 263–272)

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang L, Li TN, Yuan YS, Jiang SM, Tong Q, Wang M, Wang JW, Chen HJ, Ding J, Xu QR, Zhang KZ (2016) The neural basis of postural instability gait disorder subtype of Parkinson’s disease: A PET and fMRI Study. CNS Neurosci Ther 22:360–367

    Article  PubMed  CAS  Google Scholar 

  50. Wagner J, Stephan T, Kalla R, Bruckmann H, Strupp M, Brandt T, Jahn K (2008) Mind the bend: cerebral activations associated with mental imagery of walking along a curved path. Exp Brain Res 191:247–255

    Article  PubMed  Google Scholar 

  51. Ng TH, Sowman PF, Brock J, Johnson BW (2013) Neuromagnetic brain activity associated with anticipatory postural adjustments for bimanual load lifting. NeuroImage 66:343–352

    Article  PubMed  Google Scholar 

  52. Takakusaki K (2017) Functional neuroanatomy for posture and gait control. J Mov Disord 10:1–17

    Article  PubMed  PubMed Central  Google Scholar 

  53. Machts J, Loewe K, Kaufmann J, Jakubiczka S, Abdulla S, Petri S, Dengler R, Heinze HJ, Vielhaber S, Schoenfeld MA, Bede P (2015) Basal ganglia pathology in ALS is associated with neuropsychological deficits. Neurol 85:1301–1309

    Article  CAS  Google Scholar 

  54. Westeneng HJ, Verstraete E, Walhout R, Schmidt R, Hendrikse J, Veldink JH, van den Heuvel MP, van den Berg LH (2015) Subcortical structures in amyotrophic lateral sclerosis. Neurobiol Aging 36:1075–1082

    Article  PubMed  Google Scholar 

  55. Munhoz RP, Li JY, Kurtinecz M, Piboolnurak P, Constantino A, Fahn S, Lang AE (2004) Evaluation of the pull test technique in assessing postural instability in Parkinson’s disease. Neurology 62:125–127

    Article  PubMed  CAS  Google Scholar 

  56. Jacobs JV, Horak FB, Van Tran K, Nutt JG (2006) An alternative clinical postural stability test for patients with Parkinson’s disease. J Neurol 253:1404–1413

    Article  PubMed  Google Scholar 

  57. Bede P, Hardiman O (2014) Lessons of ALS imaging: Pitfalls and future directions—a critical review. NeuroImage Clin 4:436–443

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bede P, Omer T, Finegan E, Chipika RH, Iyer PM, Doherty MA, Vajda A, Pender N, McLaughlin RL, Hutchinson S, Hardiman O (2018) Connectivity-based characterisation of subcortical grey matter pathology in frontotemporal dementia and ALS: a multimodal neuroimaging study. Brain Imaging Behav. https://doi.org/10.1007/s11682-018-9837-9

    Article  PubMed  Google Scholar 

  59. Bede P, Hardiman O (2018) Longitudinal structural changes in ALS: a three time-point imaging study of white and gray matter degeneration. Amyotroph Lateral Scler Frontotemporal Degener 19:232–241

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the generosity and kindness of all participating patients and healthy controls. We also thank Xavier Devrelle, Sophien Mehdi, and Sara Fernandez-Vidal (ICM Foundation) for their assistance in data recording. We thank the Center for Clinical Investigation (Instititut du Cerveau et de la Moellle Epiniere, Paris, France) and Vanessa Brochard for their role in the organisation and management of the study.

Funding

This study was funded by a grant from the Association for Research on ALS (ARSLA) and the Institut National pour la Santé et la Recherche Médicale (INSERM). The research leading to these results has also received support from the programme ‘‘Investissements d’avenir’’ ANR-10-IAIHU-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-François Pradat.

Ethics declarations

Conflicts of interest

The authors have no actual or potential conflict of interest to disclose, including any financial, personal, or other relationships with other individuals or organisations within 3 years of beginning the submitted work that could inappropriately influence, or be perceived to influence, their work. Marie-Laure Welter received research support from the ‘Institut du Cerveau et de la Moelle. Epinière’ (ICM) Foundation and the Agence Nationale de la Recherche. Nicolas Termoz received research support from the Laboratoire CeRSM—EA 2931. Peter Bede is supported by the Health Research Board (HRB—Ireland; HRB EIA-2017-019), the Irish Institute of Clinical Neuroscience IICN—Novartis Ireland Research (IICN—2016), the Iris O’Brien Foundation, the Perrigo Clinician-Scientist Research Fellowship, and the Research Motor Neuron (RMN-Ireland) Foundation Ireland. Pierre-François Pradat received research support from the French Association for Research in ALS (ARSla), the Institute for Research in Spinal Cord and Brain (IRME), the French Association for Myopathie (AFM-Telethon), Paris Institute of Translational Neuroscience (IHU-A-ICM), the Thierry Latran foundation, the Target ALS foundation and the Institut National pour la Santé et la Recherche Médicale (INSERM). Giovanni de Marco received research support from the Laboratoire CeRSM—EA 2931 and COMUE Université Paris Lumières.

Ethics approval

All procedures performed in this study were fully approved by the local, institutional ethics committee (CPP Ile-de-France Paris VI; INSERM promotion RBM C12-13) and were in accordance with the 1964 Helsinki Declaration and its later amendments. This study does not involve any methods or experiments with animals.

Informed consent

All study participants provided informed consent prior to inclusion in the study.

Glossary

ALS

Amyotrophic lateral sclerosis

APA

Anticipatory postural adjustment

CoM

Centre of mass

CoP

Centre of foot pressure

EP

Execution phase

FO

Foot-off of the swing leg

FO2

Foot-off of the stance leg

GM

Grey matter

HC

Healthy control

MRI

Magnetic resonance imaging

CN

Caudate nucleus

L

Stride length

NPI-ALS

ALS patients without postural instability

PI-ALS

ALS patients with postural instability

PD

Parkinson’s disease

PU

Putamen

VBM

Voxel-based morphometry

V 1

Minimum vertical velocity of the CoM

V 2

CoM vertical velocity of the CoM at time of foot contact

V m

Maximum anteroposterior velocity of the CoM

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feron, M., Couillandre, A., Mseddi, E. et al. Extrapyramidal deficits in ALS: a combined biomechanical and neuroimaging study. J Neurol 265, 2125–2136 (2018). https://doi.org/10.1007/s00415-018-8964-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-018-8964-y

Keywords

Navigation