Journal of Neurology

, Volume 265, Issue 9, pp 2125–2136 | Cite as

Extrapyramidal deficits in ALS: a combined biomechanical and neuroimaging study

  • Maryse Feron
  • Annabelle Couillandre
  • Eya Mseddi
  • Nicolas Termoz
  • Malek Abidi
  • Eric Bardinet
  • Daniel Delgadillo
  • Timothée Lenglet
  • Giorgia Querin
  • Marie-Laure Welter
  • Nadine Le Forestier
  • François Salachas
  • Gaelle Bruneteau
  • Maria del Mar Amador
  • Rabab Debs
  • Lucette Lacomblez
  • Vincent Meininger
  • Mélanie Pélégrini-Issac
  • Peter Bede
  • Pierre-François PradatEmail author
  • Giovanni de Marco
Original Communication



Extrapyramidal deficits are poorly characterised in amyotrophic lateral sclerosis (ALS) despite their contribution to functional disability, increased fall risk and their quality-of-life implications. Given the concomitant pyramidal and cerebellar degeneration in ALS, the clinical assessment of extrapyramidal features is particularly challenging.


The comprehensive characterisation of postural instability in ALS using standardised clinical assessments, gait analyses and computational neuroimaging tools in a prospective study design.


Parameters of gait initiation in the anticipatory postural adjustment phase (APA) and execution phase (EP) were evaluated in ALS patients with and without postural instability and healthy controls. Clinical and gait analysis parameters were interpreted in the context of brain imaging findings.


ALS patients with postural instability exhibit impaired gait initiation with an altered APA phase, poor dynamic postural control and significantly decreased braking index. Consistent with their clinical profile, “unsteady” ALS patients have reduced caudate and brain stem volumes compared to “steady” ALS patients.


Our findings highlight that the ALS functional rating scale (ALSFRS-r) does not account for extrapyramidal deficits, which are major contributors to gait impairment in a subset of ALS patients. Basal ganglia degeneration in ALS does not only contribute to cognitive and behavioural deficits, but also adds to the heterogeneity of motor disability.


Amyotrophic lateral sclerosis Gait impairment Postural instability Magnetic resonance imaging Basal ganglia 



The authors are grateful for the generosity and kindness of all participating patients and healthy controls. We also thank Xavier Devrelle, Sophien Mehdi, and Sara Fernandez-Vidal (ICM Foundation) for their assistance in data recording. We thank the Center for Clinical Investigation (Instititut du Cerveau et de la Moellle Epiniere, Paris, France) and Vanessa Brochard for their role in the organisation and management of the study.


This study was funded by a grant from the Association for Research on ALS (ARSLA) and the Institut National pour la Santé et la Recherche Médicale (INSERM). The research leading to these results has also received support from the programme ‘‘Investissements d’avenir’’ ANR-10-IAIHU-06.

Compliance with ethical standards

Conflicts of interest

The authors have no actual or potential conflict of interest to disclose, including any financial, personal, or other relationships with other individuals or organisations within 3 years of beginning the submitted work that could inappropriately influence, or be perceived to influence, their work. Marie-Laure Welter received research support from the ‘Institut du Cerveau et de la Moelle. Epinière’ (ICM) Foundation and the Agence Nationale de la Recherche. Nicolas Termoz received research support from the Laboratoire CeRSM—EA 2931. Peter Bede is supported by the Health Research Board (HRB—Ireland; HRB EIA-2017-019), the Irish Institute of Clinical Neuroscience IICN—Novartis Ireland Research (IICN—2016), the Iris O’Brien Foundation, the Perrigo Clinician-Scientist Research Fellowship, and the Research Motor Neuron (RMN-Ireland) Foundation Ireland. Pierre-François Pradat received research support from the French Association for Research in ALS (ARSla), the Institute for Research in Spinal Cord and Brain (IRME), the French Association for Myopathie (AFM-Telethon), Paris Institute of Translational Neuroscience (IHU-A-ICM), the Thierry Latran foundation, the Target ALS foundation and the Institut National pour la Santé et la Recherche Médicale (INSERM). Giovanni de Marco received research support from the Laboratoire CeRSM—EA 2931 and COMUE Université Paris Lumières.

Ethics approval

All procedures performed in this study were fully approved by the local, institutional ethics committee (CPP Ile-de-France Paris VI; INSERM promotion RBM C12-13) and were in accordance with the 1964 Helsinki Declaration and its later amendments. This study does not involve any methods or experiments with animals.

Informed consent

All study participants provided informed consent prior to inclusion in the study.



Amyotrophic lateral sclerosis


Anticipatory postural adjustment


Centre of mass


Centre of foot pressure


Execution phase


Foot-off of the swing leg


Foot-off of the stance leg


Grey matter


Healthy control


Magnetic resonance imaging


Caudate nucleus


Stride length


ALS patients without postural instability


ALS patients with postural instability


Parkinson’s disease




Voxel-based morphometry


Minimum vertical velocity of the CoM


CoM vertical velocity of the CoM at time of foot contact


Maximum anteroposterior velocity of the CoM


  1. 1.
    Turner MR, Hardiman O, Benatar M, Brooks BR, Chio A, de Carvalho M, Ince PG, Lin C, Miller RG, Mitsumoto H, Nicholson G, Ravits J, Shaw PJ, Swash M, Talbot K, Traynor BJ, Van den Berg LH, Veldink JH, Vucic S, Kiernan MC (2013) Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol 12:310–322CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, Nakanishi A, Grp BAS (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. J Neurol Sci 169:13–21CrossRefPubMedGoogle Scholar
  3. 3.
    de Carvalho M, Chio A, Dengler R, Hecht M, Weber M, Swash M (2005) Neurophysiological measures in amyotrophic lateral sclerosis: markers of progression in clinical trials. Amyotroph Lateral Scler Other Motor Neuron Disord 6:17–28CrossRefPubMedGoogle Scholar
  4. 4.
    Bede P, Bokde A, Elamin M, Byrne S, McLaughlin RL, Jordan N, Hampel H, Gallagher L, Lynch C, Fagan AJ, Pender N, Hardiman O (2013) Grey matter correlates of clinical variables in amyotrophic lateral sclerosis (ALS): a neuroimaging study of ALS motor phenotype heterogeneity and cortical focality. J Neurol Neurosurg Psychiatry 84:766–773CrossRefPubMedGoogle Scholar
  5. 5.
    Phukan J, Elamin M, Bede P, Jordan N, Gallagher L, Byrne S, Lynch C, Pender N, Hardiman O (2012) The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry 83:102–108CrossRefPubMedGoogle Scholar
  6. 6.
    Bede P, Elamin M, Byrne S, McLaughlin RL, Kenna K, Vajda A, Fagan A, Bradley DG, Hardiman O (2015) Patterns of cerebral and cerebellar white matter degeneration in ALS. J Neurol Neurosurg Psychiatry 86:468–470CrossRefPubMedGoogle Scholar
  7. 7.
    Bede P, Elamin M, Byrne S, McLaughlin RL, Kenna K, Vajda A, Pender N, Bradley DG, Hardiman O (2013) Basal ganglia involvement in amyotrophic lateral sclerosis. Neurology 81:2107–2115CrossRefPubMedGoogle Scholar
  8. 8.
    Desai J, Swash M (1999) Extrapyramidal involvement in amyotrophic lateral sclerosis: backward falls and retropulsion. J Neurol Neurosurg Psychiatry 67:214–216CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pradat P-F, Bruneteau G, Munerati E, Salachas F, Le Forestier N, Lacomblez L, Lenglet T, Meininger V (2009) Extrapyramidal stiffness in patients with amyotrophic lateral sclerosis. Mov Disord 24:2143–2148CrossRefPubMedGoogle Scholar
  10. 10.
    Sanjak M, Hirsch MA, Bravver EK, Bockenek WL, Norton HJ, Brooks BR (2014) Vestibular deficits leading to disequilibrium and falls in ambulatory amyotrophic lateral sclerosis. Arch Phys Med Rehabil 95:1933–1939CrossRefPubMedGoogle Scholar
  11. 11.
    Prell T, Grosskreutz J (2013) The involvement of the cerebellum in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 14:507–515CrossRefPubMedGoogle Scholar
  12. 12.
    Radovanovic S, Milicev M, Peric S, Basta I, Kostic V, Stevic Z (2014) Gait in amyotrophic lateral sclerosis: is gait pattern differently affected in spinal and bulbar onset of the disease during dual task walking? Amyotroph Lateral Scler Frontotemporal Degener 15:488–493CrossRefPubMedGoogle Scholar
  13. 13.
    Elamin M, Bede P, Byrne S, Jordan N, Gallagher L, Wynne B, O’Brien C, Phukan J, Lynch C, Pender N (2013) Cognitive changes predict functional decline in ALS. A population-based longitudinal study. Neurology 80:1590–1597CrossRefPubMedGoogle Scholar
  14. 14.
    Elamin M, Phukan J, Bede P, Jordan N, Byrne S, Pender N, Hardiman O (2011) Executive dysfunction is a negative prognostic indicator in patients with ALS without dementia. Neurology 76:1263–1269CrossRefPubMedGoogle Scholar
  15. 15.
    Olney RK, Murphy J, Forshew D, Garwood E, Miller BL, Langmore S, Kohn MA, Lomen-Hoerth C (2005) The effects of executive and behavioral dysfunction on the course of ALS. Neurology 65:1774–1777CrossRefPubMedGoogle Scholar
  16. 16.
    Majmudar S, Wu J, Paganoni S (2014) Rehabilitation in amyotrophic lateral sclerosis: why it matters. Muscle Nerve 50:4–13CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Montes J, Cheng B, Diamond B, Doorish C, Mitsumoto H, Gordon PH (2007) The Timed Up and Go test: predicting falls in ALS. Amyotroph Lateral Sclerosis 8:292–295CrossRefGoogle Scholar
  18. 18.
    Peterson DS, Horak FB (2016) Neural control of walking in people with Parkinsonism. Physiology (Bethesda Md) 31:95–107Google Scholar
  19. 19.
    Hausdorff JM, Lertratanakul A, Cudkowicz ME, Peterson AL, Kaliton D, Goldberger AL (2000) Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J Appl Physiol (Bethesda, Md: 1985) 88:2045–2053CrossRefGoogle Scholar
  20. 20.
    Lepers R, Breniere Y (1995) The role of anticipatory postural adjustments and gravity in gait initiation. Exp Brain Res 107:118–124CrossRefPubMedGoogle Scholar
  21. 21.
    Anand M, Seipel J, Rietdyk S (2017) A modelling approach to the dynamics of gait initiation. J R Soc Interface 14:20170043CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Isaias IU, Dipaola M, Michi M, Marzegan A, Volkmann J, Rodocanachi Roidi ML, Frigo CA, Cavallari P (2014) Gait initiation in children with Rett syndrome. PLoS One 9:e92736CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Welter ML, Do MC, Chastan N, Torny F, Bloch F, du Montcel ST, Agid Y (2007) Control of vertical components of gait during initiation of walking in normal adults and patients with progressive supranuclear palsy. Gait posture 26:393–399CrossRefPubMedGoogle Scholar
  24. 24.
    Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron D (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299CrossRefPubMedGoogle Scholar
  25. 25.
    Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, van Swieten JC, Seelaar H, Dopper EGP, Onyike CU, Hillis AE, Josephs KA, Boeve BF, Kertesz A, Seeley WW, Rankin KP, Johnson JK, Gorno-Tempini ML, Rosen H, Prioleau-Latham CE, Lee A, Kipps CM, Lillo P, Piguet O, Rohrer JD, Rossor MN, Warren JD, Fox NC, Galasko D, Salmon DP, Black SE, Mesulam M, Weintraub S, Dickerson BC, Diehl-Schmid J, Pasquier F, Deramecourt V, Lebert F, Pijnenburg Y, Chow TW, Manes F, Grafman J, Cappa SF, Freedman M, Grossman M, Miller BL (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain J Neurol 134:2456–2477CrossRefGoogle Scholar
  26. 26.
    Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease (2003) The Unified Parkinson’s Disease Rating Scale (UPDRS): status and recommendations. Mov Disord 18:738–750CrossRefGoogle Scholar
  27. 27.
    Bohannon RW, Smith MB (1987) Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 67:206–207CrossRefPubMedGoogle Scholar
  28. 28.
    Berg K, Wood-Dauphinee S, Williams JI (1995) The Balance Scale: reliability assessment with elderly residents and patients with an acute stroke. Scand J Rehabil Med 27:27–36PubMedGoogle Scholar
  29. 29.
    Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage 56:907–922CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gilbert RM, Fahn S, Mitsumoto H, Rowland LP (2010) Parkinsonism and motor neuron diseases: twenty-seven patients with diverse overlap syndromes. Mov Disord 25:1868–1875CrossRefPubMedGoogle Scholar
  31. 31.
    Snow BJ, Peppard RF, Guttman M, Okada J, Martin WR, Steele J, Eisen A, Carr G, Schoenberg B, Calne D (1990) Positron emission tomographic scanning demonstrates a presynaptic dopaminergic lesion in Lytico-Bodig. The amyotrophic lateral sclerosis-parkinsonism-dementia complex of Guam. Arch Neurol 47:870–874CrossRefPubMedGoogle Scholar
  32. 32.
    Takahashi H, Snow BJ, Bhatt MH, Peppard R, Eisen A, Calne DB (1993) Evidence for a dopaminergic deficit in sporadic amyotrophic lateral sclerosis on positron emission scanning. Lancet 342:1016–1018CrossRefPubMedGoogle Scholar
  33. 33.
    Borasio GD, Linke R, Schwarz J, Schlamp V, Abel A, Mozley PD, Tatsch K (1998) Dopaminergic deficit in amyotrophic lateral sclerosis assessed with [I-123] IPT single photon emission computed tomography. J Neurol Neurosurg Psychiatry 65:263–265CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sharma KR, Saigal G, Maudsley AA, Govind V (2011) 1H MRS of basal ganglia and thalamus in amyotrophic lateral sclerosis. NMR Biomed 24:1270–1276CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Verma G, Woo JH, Chawla S, Wang S, Sheriff S, Elman LB, McCluskey LF, Grossman M, Melhem ER, Maudsley AA, Poptani H (2013) Whole-brain analysis of amyotrophic lateral sclerosis by using echo-planar spectroscopic imaging. Radiology 267:851–857CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Fathinia P, Hermann A, Reuner U, Kassubek J, Storch A, Ludolph AC (2013) Parkinson’s disease-like midbrain hyperechogenicity is frequent in amyotrophic lateral sclerosis. J Neurol 260:454–457CrossRefPubMedGoogle Scholar
  37. 37.
    Prell T, Schenk A, Witte OW, Grosskreutz J, Gunther A (2014) Transcranial brainstem sonography as a diagnostic tool for amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 15:244–249CrossRefPubMedGoogle Scholar
  38. 38.
    Kato S, Oda M, Tanabe H (1993) Diminution of dopaminergic neurons in the substantia nigra of sporadic amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 19:300–304CrossRefPubMedGoogle Scholar
  39. 39.
    Brettschneider J, Arai K, Del Tredici K, Toledo JB, Robinson JL, Lee EB, Kuwabara S, Shibuya K, Irwin DJ, Fang L, Van Deerlin VM, Elman L, McCluskey L, Ludolph AC, Lee VM, Braak H, Trojanowski JQ (2014) TDP-43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord. Acta Neuropathol 128:423–437CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Majoor-Krakauer D, Ottman R, Johnson WG, Rowland LP (1994) Familial aggregation of amyotrophic lateral sclerosis, dementia, and Parkinson’s disease: evidence of shared genetic susceptibility. Neurology 44:1872–1877CrossRefPubMedGoogle Scholar
  41. 41.
    Longinetti E, Mariosa D, Larsson H, Ye W, Ingre C, Almqvist C, Lichtenstein P, Piehl F, Fang F (2017) Neurodegenerative and psychiatric diseases among families with amyotrophic lateral sclerosis. Neurology 89:578–585CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, Armakola M, Geser F, Greene R, Lu MM, Padmanabhan A, Clay-Falcone D, McCluskey L, Elman L, Juhr D, Gruber PJ, Rub U, Auburger G, Trojanowski JQ, Lee VM, Van Deerlin VM, Bonini NM, Gitler AD (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466:1069–1075CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Eisen A, Calne D (1992) Amyotrophic lateral sclerosis, Parkinson’s disease and Alzheimer’s disease: phylogenetic disorders of the human neocortex sharing many characteristics. Can J Neurol Sci 19:117–123PubMedGoogle Scholar
  44. 44.
    Eisen A, Turner MR, Lemon R (2014) Tools and talk: an evolutionary perspective on the functional deficits associated with amyotrophic lateral sclerosis. Muscle Nerve 49:469–477CrossRefPubMedGoogle Scholar
  45. 45.
    Maillet A, Pollak P, Debu B (2012) Imaging gait disorders in parkinsonism: a review. J Neurol Neurosurg Psychiatry 83:986–993CrossRefPubMedGoogle Scholar
  46. 46.
    la Fougere C, Zwergal A, Rominger A, Forster S, Fesl G, Dieterich M, Brandt T, Strupp M, Bartenstein P, Jahn K (2010) Real versus imagined locomotion: a [18F]-FDG PET-fMRI comparison. NeuroImage 50:1589–1598CrossRefPubMedGoogle Scholar
  47. 47.
    Karim HT, Sparto PJ, Aizenstein HJ, Furman JM, Huppert TJ, Erickson KI, Loughlin PJ (2014) Functional MR imaging of a simulated balance task. Brain Res 1555:20–27CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Visser JE, Bloem BR (2005) Role of the basal ganglia in balance control. Neural Plast 12:161–174 (discussion 263–272) CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zhang L, Li TN, Yuan YS, Jiang SM, Tong Q, Wang M, Wang JW, Chen HJ, Ding J, Xu QR, Zhang KZ (2016) The neural basis of postural instability gait disorder subtype of Parkinson’s disease: A PET and fMRI Study. CNS Neurosci Ther 22:360–367CrossRefPubMedGoogle Scholar
  50. 50.
    Wagner J, Stephan T, Kalla R, Bruckmann H, Strupp M, Brandt T, Jahn K (2008) Mind the bend: cerebral activations associated with mental imagery of walking along a curved path. Exp Brain Res 191:247–255CrossRefPubMedGoogle Scholar
  51. 51.
    Ng TH, Sowman PF, Brock J, Johnson BW (2013) Neuromagnetic brain activity associated with anticipatory postural adjustments for bimanual load lifting. NeuroImage 66:343–352CrossRefPubMedGoogle Scholar
  52. 52.
    Takakusaki K (2017) Functional neuroanatomy for posture and gait control. J Mov Disord 10:1–17CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Machts J, Loewe K, Kaufmann J, Jakubiczka S, Abdulla S, Petri S, Dengler R, Heinze HJ, Vielhaber S, Schoenfeld MA, Bede P (2015) Basal ganglia pathology in ALS is associated with neuropsychological deficits. Neurol 85:1301–1309CrossRefGoogle Scholar
  54. 54.
    Westeneng HJ, Verstraete E, Walhout R, Schmidt R, Hendrikse J, Veldink JH, van den Heuvel MP, van den Berg LH (2015) Subcortical structures in amyotrophic lateral sclerosis. Neurobiol Aging 36:1075–1082CrossRefPubMedGoogle Scholar
  55. 55.
    Munhoz RP, Li JY, Kurtinecz M, Piboolnurak P, Constantino A, Fahn S, Lang AE (2004) Evaluation of the pull test technique in assessing postural instability in Parkinson’s disease. Neurology 62:125–127CrossRefPubMedGoogle Scholar
  56. 56.
    Jacobs JV, Horak FB, Van Tran K, Nutt JG (2006) An alternative clinical postural stability test for patients with Parkinson’s disease. J Neurol 253:1404–1413CrossRefPubMedGoogle Scholar
  57. 57.
    Bede P, Hardiman O (2014) Lessons of ALS imaging: Pitfalls and future directions—a critical review. NeuroImage Clin 4:436–443CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Bede P, Omer T, Finegan E, Chipika RH, Iyer PM, Doherty MA, Vajda A, Pender N, McLaughlin RL, Hutchinson S, Hardiman O (2018) Connectivity-based characterisation of subcortical grey matter pathology in frontotemporal dementia and ALS: a multimodal neuroimaging study. Brain Imaging Behav. PubMedCrossRefGoogle Scholar
  59. 59.
    Bede P, Hardiman O (2018) Longitudinal structural changes in ALS: a three time-point imaging study of white and gray matter degeneration. Amyotroph Lateral Scler Frontotemporal Degener 19:232–241CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Maryse Feron
    • 1
  • Annabelle Couillandre
    • 1
    • 2
  • Eya Mseddi
    • 1
  • Nicolas Termoz
    • 1
    • 2
  • Malek Abidi
    • 1
  • Eric Bardinet
    • 3
    • 4
    • 5
    • 6
  • Daniel Delgadillo
    • 7
  • Timothée Lenglet
    • 8
  • Giorgia Querin
    • 8
    • 9
  • Marie-Laure Welter
    • 3
    • 4
    • 5
    • 10
    • 11
  • Nadine Le Forestier
    • 8
    • 12
  • François Salachas
    • 8
  • Gaelle Bruneteau
    • 8
  • Maria del Mar Amador
    • 8
  • Rabab Debs
    • 8
  • Lucette Lacomblez
    • 8
    • 9
  • Vincent Meininger
    • 13
  • Mélanie Pélégrini-Issac
    • 9
  • Peter Bede
    • 8
    • 9
    • 14
  • Pierre-François Pradat
    • 2
    • 8
    • 9
    • 15
    Email author
  • Giovanni de Marco
    • 1
    • 2
  1. 1.Laboratoire CeRSM – EA 2931 Paris OuestNanterreFrance
  2. 2.COMUE Université Paris LumièresParisFrance
  3. 3.Sorbonne Université, Institut du Cerveau et de la Moelle épinière (ICM), UMR-S975ParisFrance
  4. 4.Inserm, U975ParisFrance
  5. 5.CNRS, UMR 7225ParisFrance
  6. 6.Institut du Cerveau et de la Moelle Epinière, Centre de Neuroimagerie de Recherche (CENIR)ParisFrance
  7. 7.Service de Neuro-OncologieAssistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Pitié-Salpêtrière/Charles FoixParisFrance
  8. 8.Département de NeurologieAssistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Pitié-Salpêtrière/Charles FoixParisFrance
  9. 9.Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIBParisFrance
  10. 10.Institut du Cerveau et de la Moelle Epinière, Plateforme d’Analyse du Mouvement (PANAM)ParisFrance
  11. 11.Neurophysiology Department, CHU Charles NicolleUniversité de RouenRouenFrance
  12. 12.Département de recherche en éthiqueUniversité Paris-Sud-SaclayLe Kremlin-BicêtreFrance
  13. 13.Hôpital des Peupliers, Ramsay générale de santéParisFrance
  14. 14.Computational Neuroimaging Group, Academic Unit of NeurologyTrinity CollegeDublinIreland
  15. 15.Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research InstituteUlster University, C-TRIC, Altnagelvin HospitalLondonderryUK

Personalised recommendations