Abstract
Background
Various randomized-controlled clinical trials (RCTs) have investigated the neuroprotective role of minocycline in acute ischemic stroke (AIS) or acute intracerebral hemorrhage (ICH) patients. We sought to consolidate and investigate the efficacy and safety of minocycline in patients with acute stroke.
Methods
Literature search spanned through November 30, 2017 across major databases to identify all RCTs that reported following efficacy outcomes among acute stroke patients treated with minocycline vs. placebo: National Institute of Health Stroke Scale (NIHSS), Barthel Index (BI), and modified Rankin Scale (mRS) scores. Additional safety, neuroimaging and biochemical endpoints were extracted. We pooled mean differences (MD) and risk ratios (RR) from RCTs using random-effects models.
Results
We identified 7 RCTs comprising a total of 426 patients. Of these, additional unpublished data was obtained on contacting corresponding authors of 5 RCTs. In pooled analysis, minocycline demonstrated a favorable trend towards 3-month functional independence (mRS-scores of 0–2) (RR = 1.31; 95% CI 0.98–1.74, p = 0.06) and 3-month BI (MD = 6.92; 95% CI − 0.92, 14.75; p = 0.08). In AIS subgroup, minocycline was associated with higher rates of 3-month mRS-scores of 0–2 (RR = 1.59; 95% CI 1.19–2.12, p = 0.002; I2 = 58%) and 3-month BI (MD = 12.37; 95% CI 5.60, 19.14, p = 0.0003; I2 = 47%), whereas reduced the 3-month NIHSS (MD − 2.84; 95% CI − 5.55, − 0.13; p = 0.04; I2 = 86%). Minocycline administration was not associated with an increased risk of mortality, recurrent stroke, myocardial infarction and hemorrhagic conversion.
Conclusions
Although data is limited, minocycline demonstrated efficacy and seems a promising neuroprotective agent in acute stroke patients, especially in AIS subgroup. Further RCTs are needed to evaluate the efficacy and safety of minocycline among ICH patients.
Similar content being viewed by others
References
Zhu S, Stavrovskaya IG, Drozda M, Kim BY, Ona V, Li M, Sarang S, Liu AS, Hartley DM, Wu DC, Gullans S, Ferrante RJ, Przedborski S, Kristal BS, Friedlander RM (2002) Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 417(6884):74–78. https://doi.org/10.1038/417074a
Popovic N, Schubart A, Goetz BD, Zhang SC, Linington C, Duncan ID (2002) Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann Neurol 51(2):215–223
Brundula V, Rewcastle NB, Metz LM, Bernard CC, Yong VW (2002) Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain: J Neurol 125(Pt 6):1297–1308
Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM, Hobbs W, Vonsattel JP, Cha JH, Friedlander RM (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nature Med 6(7):797–801. https://doi.org/10.1038/77528
Fan X, Lo EH, Wang X (2013) Effects of minocycline plus tissue plasminogen activator combination therapy after focal embolic stroke in type 1 diabetic rats. Stroke; J Cereb Circ 44(3):745–752. https://doi.org/10.1161/strokeaha.111.000309
Soliman S, Ishrat T, Fouda AY, Patel A, Pillai B, Fagan SC (2015) Sequential therapy with minocycline and candesartan improves long-term recovery after experimental stroke. Transl Stroke Res 6(4):309–322. https://doi.org/10.1007/s12975-015-0408-8
Machado LS, Sazonova IY, Kozak A, Wiley DC, El-Remessy AB, Ergul A, Hess DC, Waller JL, Fagan SC (2009) Minocycline and tissue-type plasminogen activator for stroke: assessment of interaction potential. Stroke 40(9):3028–3033. https://doi.org/10.1161/strokeaha.109.556852
Murata Y, Rosell A, Scannevin RH, Rhodes KJ, Wang X, Lo EH (2008) Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke 39(12):3372–3377. https://doi.org/10.1161/strokeaha.108.514026
Kohler E, Prentice DA, Bates TR, Hankey GJ, Claxton A, van Heerden J, Blacker D (2013) Intravenous minocycline in acute stroke: a randomized, controlled pilot study and meta-analysis. Stroke 44(9):2493–2499. https://doi.org/10.1161/strokeaha.113.000780
Chang JJ, Kim-Tenser M, Emanuel BA, Jones GM, Chapple K, Alikhani A, Sanossian N, Mack WJ, Tsivgoulis G, Alexandrov AV, Pourmotabbed T (2017) Minocycline and matrix metalloproteinase inhibition in acute intracerebral hemorrhage: a pilot study. Eur J Neurol 24(11):1384–1391. https://doi.org/10.1111/ene.13403
Fouda AY, Newsome AS, Spellicy S, Waller JL, Zhi W, Hess DC, Ergul A, Edwards DJ, Fagan SC, Switzer JA (2017) Minocycline in acute cerebral hemorrhage: an early phase randomized trial. Stroke 48(10):2885–2887. https://doi.org/10.1161/strokeaha.117.018658
Blacker DJ, Prentice D, Alvaro A, Bates TR, Bynevelt M, Kelly A, Kho LK, Kohler E, Hankey GJ, Thompson A, Major T (2013) Reducing haemorrhagic transformation after thrombolysis for stroke: a strategy utilising minocycline. Stroke Res Treat 2013:362961. https://doi.org/10.1155/2013/362961
Amiri-Nikpour MR, Nazarbaghi S, Hamdi-Holasou M, Rezaei Y (2015) An open-label evaluator-blinded clinical study of minocycline neuroprotection in ischemic stroke: gender-dependent effect. Acta Neurol Scand 131(1):45–50. https://doi.org/10.1111/ane.12296
DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188
Sweeting MJ, Sutton AJ, Lambert PC (2004) What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat Med 23(9):1351–1375. https://doi.org/10.1002/sim.1761
Higgins JP, Green S (2011) Cochrane handbook for systematic reviews of interventions, vol 4. Wiley, Chichester
Sterne JAC, Sutton AJ, Ioannidis JPA, Terrin N, Jones DR, Lau J, Carpenter J, Rücker G, Harbord RM, Schmid CH, Tetzlaff J, Deeks JJ, Peters J, Macaskill P, Schwarzer G, Duval S, Altman DG, Moher D, Higgins JPT (2011) Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. https://doi.org/10.1136/bmj.d4002
Sterne JA, Gavaghan D, Egger M (2000) Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol 53(11):1119–1129
Switzer JA, Hess DC, Ergul A, Waller JL, Machado LS, Portik-Dobos V, Pettigrew LC, Clark WM, Fagan SC (2011) Matrix metalloproteinase-9 in an exploratory trial of intravenous minocycline for acute ischemic stroke. Stroke 42(9):2633–2635. https://doi.org/10.1161/strokeaha.111.618215
Fagan SC, Waller JL, Nichols FT, Edwards DJ, Pettigrew LC, Clark WM, Hall CE, Switzer JA, Ergul A, Hess DC (2010) Minocycline to improve neurologic outcome in stroke (MINOS): a dose-finding study. Stroke 41(10):2283–2287. https://doi.org/10.1161/strokeaha.110.582601
Lampl Y, Boaz M, Gilad R, Lorberboym M, Dabby R, Rapoport A, Anca-Hershkowitz M, Sadeh M (2007) Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 69(14):1404–1410. https://doi.org/10.1212/01.wnl.0000277487.04281.db
Padma Srivastava MV, Bhasin A, Bhatia R, Garg A, Gaikwad S, Prasad K, Singh MB, Tripathi M (2012) Efficacy of minocycline in acute ischemic stroke: a single-blinded, placebo-controlled trial. Neurol India 60(1):23–28
Barr TL, Latour LL, Lee KY, Schaewe TJ, Luby M, Chang GS, El-Zammar Z, Alam S, Hallenbeck JM, Kidwell CS, Warach S (2010) Blood-brain barrier disruption in humans is independently associated with increased matrix metalloproteinase-9. Stroke 41(3):e123–e128. https://doi.org/10.1161/strokeaha.109.570515
Li N, Liu YF, Ma L, Worthmann H, Wang YL, Wang YJ, Gao YP, Raab P, Dengler R, Weissenborn K, Zhao XQ (2013) Association of molecular markers with perihematomal edema and clinical outcome in intracerebral hemorrhage. Stroke 44(3):658–663. https://doi.org/10.1161/strokeaha.112.673590
Castellazzi M, Tamborino C, De Santis G, Garofano F, Lupato A, Ramponi V, Trentini A, Casetta I, Bellini T, Fainardi E (2010) Timing of serum active MMP-9 and MMP-2 levels in acute and subacute phases after spontaneous intracerebral hemorrhage. Acta Neurochir Suppl 106:137–140. https://doi.org/10.1007/978-3-211-98811-4_24
Alvarez-Sabin J, Delgado P, Abilleira S, Molina CA, Arenillas J, Ribo M, Santamarina E, Quintana M, Monasterio J, Montaner J (2004) Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome. Stroke 35(6):1316–1322. https://doi.org/10.1161/01.str.0000126827.69286.90
Wu J, Yang S, Hua Y, Liu W, Keep RF, Xi G (2010) Minocycline attenuates brain edema, brain atrophy and neurological deficits after intracerebral hemorrhage. Acta Neurochir Suppl 106:147–150. https://doi.org/10.1007/978-3-211-98811-4_26
Funding
This study received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.
Author information
Authors and Affiliations
Contributions
KM: Study concept and design, acquisition of data, analysis and interpretation, critical revision of the manuscript for important intellectual content. JJC: Acquisition and interpretation of data, critical revision of the manuscript for important intellectual content. AK: Analysis and interpretation, critical revision of the manuscript for important intellectual content. DB: Acquisition and interpretation of data, critical revision of the manuscript for important intellectual content. JAS: Acquisition and interpretation of data, critical revision of the manuscript for important intellectual content. NG: Acquisition and interpretation of data, critical revision of the manuscript for important intellectual content. AVH: Analysis and interpretation, critical revision of the manuscript for important intellectual content. VP: Analysis and interpretation, critical revision of the manuscript for important intellectual content. AVA: Acquisition and interpretation of data, critical revision of the manuscript for important intellectual content. GT: Study concept and design, study supervision, critical revision of the manuscript for important intellectual content.
Corresponding author
Ethics declarations
Conflicts of interest
Dr. Malhotra reports no disclosures. Dr. Chang reports no disclosures. Dr. Khunger reports no disclosures. Dr. Blacker reports no disclosures. Dr. Switzer reports no disclosures. Dr. Goyal reports no disclosures. Dr. Hernandez reports no disclosures. Dr. Pasupuleti reports no disclosures. Dr. Alexandrov reports no disclosures. Dr. Tsivgoulis reports no disclosures.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Malhotra, K., Chang, J.J., Khunger, A. et al. Minocycline for acute stroke treatment: a systematic review and meta-analysis of randomized clinical trials. J Neurol 265, 1871–1879 (2018). https://doi.org/10.1007/s00415-018-8935-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00415-018-8935-3